Chứng minh biểu thức sau >0 ∀x
2x2 - 4x + 12
x2 + 2x + 7
Các cậu giúp tớ với. Cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm MIN :
a) \(9x^2-4x+11=\left(3x\right)^2-2.3x.\frac{4}{6}+\frac{4}{9}-\frac{95}{9}\)
\(=\left(3x-\frac{4}{6}\right)^2-\frac{95}{9}\ge\frac{95}{9}\)
Dấu "=" xảy ra \(\Leftrightarrow x=?\)
\(2x-x^2-10=-\left(x^2-2x+1\right)+9=-\left(x-1\right)^2+9\ge0\)
`(x+2)(x^2-2x+4)-x^2 .(x-2) -2x^2`
`=x^3+2^3-(x^3-2x^2)-2x^2`
`=x^3+8-x^3+2x^2-2x^2`
`=8`
\(\left(x+2\right)\left(x^2-2x+4\right)-x^2\left(x-2\right)-2x^2\)
\(=x^3+8-x^3+2x^2-2x^2\)
=8
2)
a)\(x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x^2-2.x.2+2^2\right)+3\)
\(=\left(x-2\right)^2+3\)
Vì \(\left(x-2\right)^2\ge0\)
Nên \(\left(x-2\right)^2+3\ge3\) \(\left(dpcm\right)\)
b)\(-x^2+4x-7\)
\(=-x^2+4x-4-3\)
\(=-\left(x^2-2.x.2+2^2\right)-3\)
\(=-\left(x-2\right)^2-3\)
Vì \(\left(x-2\right)^2\ge0\)
Nên \(-\left(x-2\right)^2\le0\)
Vậy \(-\left(x-2\right)^2-3< 0\) \(\left(dpcm\right)\)
Ta có :
\(x^2-4x+5=\left(x^2-2.2x+2^2\right)+1=\left(x-2\right)^2+1\ge1>0\)
Vậy đa thức \(x^2-4x+5\) vô nghiệm với mọi giá trị của x
Chúc bạn học tốt ~
Bài 4.
\(A=2x^3+(x+1)^3-3x(x-2)(x+2)-3(x^2+5x+9)\\=2x^3+(x^3+3x^2+3x+1)-3x(x^2-4)-3x^2-15x-27\\=2x^3+x^3+3x^2+3x+1-3x^3+12x-3x^2-15x-27\\=(2x^3+x^3-3x^3)+(3x^2-3x^2)+(3x+12x-15x)+(1-27)\\=-26\\---\)
\(B=x(x-4x)+x(2-x)(x+2)+4(2x^2-5x+4)\\=x\cdot(-3x)+x(2-x)(2+x)+8x^2-20x+16\\=-3x^2+x(4-x^2)+8x^2-20x+16\\=-3x^2+4x-x^3+8x^2-20x+16\)
Bạn kiểm tra lại đề giúp mình!
\(C=(x-2y)(x^2+2xy+4y^2)-(x^3-8y^3+10)\) (sửa đề)
\(=x^3-(2y)^3-x^3+8y^2-10\\=x^3-8y^3-x^3+8y^3-10\\=(x^3-x^3)+(-8y^3+8y^3)-10\\=-10\)
Bài 5.
\(d)xy^2-3x^3y^2-2x(xy-3xy^2)\\=xy^2-3x^3y^2-2x^2y+6x^2y^2\\---\\f)(x-y)(2x+y)-2x^2+y^2+3xy\\=x(2x+y)-y(2x+y)-2x^2+y^2+3xy\\=2x^2+xy-2xy-y^2-2x^2+y^2+3xy\\=(2x^2-2x^2)+(xy-2xy+3xy)+(-y^2+y^2)\\=2xy\)
\(Toru\)
5x + 2 chia hết cho 9 - 2x
=> 2(5x + 2) = 10x + 4 chia hết cho 9 - 2x
=> 10x + 4 + 5(9 - 2x) = 10x + 4 + 45 - 10x = 49 chia hết cho 9 - 2x
=> 9 - 2x thuộc Ư(49) = {1, 7, 49}
=> 2x thuộc {8, 2, -40}
=> x thuộc {1, 4, -20}
Vậy x thuộc {1, 4, -20}
Học tốt nhé!
1) \(\left(x-3\right)\left(x-5\right)+2\)
\(=x^2-8x+15+2\)
\(=\left(x^2-8x+16\right)+1\)
\(=\left(x-4\right)^2+1\)
Vì \(\left(x-4\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x-4\right)^2+1\ge1>0;\forall x\)
Vậy....
2) tương tự
\(1.\left(x-3\right)\left(x-5\right)+2\)
\(=x^2-8x+15+2\)
\(=x^2-2.4x+16+1\)
\(=\left(x-4\right)^2+1\)
Do \(\left(x-4\right)^2\ge0\)nên \(\left(x-4\right)^2+1\ge1\)
hay \(\left(x-3\right)\left(x-5\right)+2>0\)
\(2x^2-4x+12\)
\(=2\left(x^2-2x+6\right)\)
\(=2\left(x^2-2x+1+5\right)\)
\(=2\left[\left(x-1\right)^2+5\right]\)
\(=2\left(x-1\right)^2+10\ge10>0\forall x\)
( Do \(2\left(x-1\right)^2\ge0\forall x\) )
Ta có đpcm
\(x^2+2x+7\)
\(=\left(x+1\right)^2+6\ge6>0\forall x\)
Ta có đpcm