K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\frac{\left(-7\right)^n}{\left(-7\right)^{n-1}}=\left(-7\right)^n:\left(-7\right)^{n-1}=\left(-7\right)^{n-\left(n-1\right)}=\left(-7\right)^1=-7\)

a: \(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n\cdot\dfrac{-7}{5}}=1:\dfrac{-7}{5}=-\dfrac{5}{7}\)

b: \(=\dfrac{\dfrac{1}{4}^n}{\left(-\dfrac{1}{2}\right)^n}=\left(-\dfrac{1}{2}\right)^n\)

28 tháng 7 2018

\(\frac{\left(-\frac{5}{7}\right)^n}{\left(-\frac{5}{7}\right)^{n-1}}=\left(-\frac{5}{7}\right)^{n-\left(n-1\right)}=-\frac{5}{7}\)

A\(\ge\)1 ma

27 tháng 4 2019

Áp dụng bđt sau : \(\frac{a^n+b^n}{2}\ge\frac{\left(a+b\right)^n}{2}\)ta được

\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge2\left(\frac{\frac{1}{1+a}+\frac{1}{1+b}}{2}\right)^n\)

Ta đi c/m bđt phụ : Với a,b > 1 thì \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)(1)

Bđt (1) \(\Leftrightarrow\frac{\left(a+b\right)+2}{1+\left(a+b\right)+ab}\ge\frac{2}{1+\sqrt{ab}}\)(Quy đồng VT)

           \(\Leftrightarrow\left(a+b\right)+2+\left(a+b\right)\sqrt{ab}+2\sqrt{ab}\ge2+2\left(a+b\right)+2ab\)

           \(\Leftrightarrow\left(a+b\right)\left(\sqrt{ab}-1\right)+2\sqrt{ab}\left(1-\sqrt{ab}\right)\ge0\)

         \(\Leftrightarrow\left(\sqrt{ab}-1\right)\left(a+b-2\sqrt{ab}\right)\ge0\)

          \(\Leftrightarrow\left(\sqrt{ab}-1\right)\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(Luôn đúng vs mọi a;b > 1)

Áp dụng bđt (1) được

\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge2\left(\frac{\frac{1}{1+a}+\frac{1}{1+b}}{2}\right)^n\ge2\left(\frac{1}{1+\sqrt{ab}}\right)^n=\frac{2}{\left(1+\sqrt{ab}\right)^n}\)

Dấu "=" xảy ra tại a = b

13 tháng 5 2019

Áp dụng  buổi thức đơn ta được

\(\sqrt[a]{b}\)\(a+b:2\)\(>\)ta được

\(\frac{1}{1+A}\)\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)

\(\frac{A+B=2}{ }\)

\(\frac{A+B=2}{1+A+B}\)

\(VẬY\)Nếu bạn làm tắt theo mik thì

Mik chưa ra đáp án được vì

\(B\sqrt[A]{B}\)CHỖ B BỊ LỖI 

MAGICPENCIL,HÃY LUÔN :-)