\(\frac{\left(-7\right)^n}{\left(-7\right)^{n-1}}\) (n\(\ge\)1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{\left(-\dfrac{5}{7}\right)^n}{\left(-\dfrac{5}{7}\right)^n\cdot\dfrac{-7}{5}}=1:\dfrac{-7}{5}=-\dfrac{5}{7}\)
b: \(=\dfrac{\dfrac{1}{4}^n}{\left(-\dfrac{1}{2}\right)^n}=\left(-\dfrac{1}{2}\right)^n\)
\(\frac{\left(-\frac{5}{7}\right)^n}{\left(-\frac{5}{7}\right)^{n-1}}=\left(-\frac{5}{7}\right)^{n-\left(n-1\right)}=-\frac{5}{7}\)
Áp dụng bđt sau : \(\frac{a^n+b^n}{2}\ge\frac{\left(a+b\right)^n}{2}\)ta được
\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge2\left(\frac{\frac{1}{1+a}+\frac{1}{1+b}}{2}\right)^n\)
Ta đi c/m bđt phụ : Với a,b > 1 thì \(\frac{1}{1+a}+\frac{1}{1+b}\ge\frac{2}{1+\sqrt{ab}}\)(1)
Bđt (1) \(\Leftrightarrow\frac{\left(a+b\right)+2}{1+\left(a+b\right)+ab}\ge\frac{2}{1+\sqrt{ab}}\)(Quy đồng VT)
\(\Leftrightarrow\left(a+b\right)+2+\left(a+b\right)\sqrt{ab}+2\sqrt{ab}\ge2+2\left(a+b\right)+2ab\)
\(\Leftrightarrow\left(a+b\right)\left(\sqrt{ab}-1\right)+2\sqrt{ab}\left(1-\sqrt{ab}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{ab}-1\right)\left(a+b-2\sqrt{ab}\right)\ge0\)
\(\Leftrightarrow\left(\sqrt{ab}-1\right)\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(Luôn đúng vs mọi a;b > 1)
Áp dụng bđt (1) được
\(\frac{1}{\left(1+a\right)^n}+\frac{1}{\left(1+b\right)^n}\ge2\left(\frac{\frac{1}{1+a}+\frac{1}{1+b}}{2}\right)^n\ge2\left(\frac{1}{1+\sqrt{ab}}\right)^n=\frac{2}{\left(1+\sqrt{ab}\right)^n}\)
Dấu "=" xảy ra tại a = b
Áp dụng buổi thức đơn ta được
\(\sqrt[a]{b}\)\(a+b:2\)\(>\)ta được
\(\frac{1}{1+A}\)+ \(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(\frac{A+B=2}{ }\)
\(\frac{A+B=2}{1+A+B}\)
\(VẬY\)Nếu bạn làm tắt theo mik thì
Mik chưa ra đáp án được vì
\(B\sqrt[A]{B}\)CHỖ B BỊ LỖI
MAGICPENCIL,HÃY LUÔN :-)
\(\frac{\left(-7\right)^n}{\left(-7\right)^{n-1}}=\left(-7\right)^n:\left(-7\right)^{n-1}=\left(-7\right)^{n-\left(n-1\right)}=\left(-7\right)^1=-7\)