\(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{\sqrt{35}.\sqrt{35}}\)
\(=\frac{\sqrt{35}.(5\sqrt{7}-7\sqrt{5}+2\sqrt{70})}{35}\)
\(\sqrt{\frac{4}{3}}+\sqrt{12}-\frac{4}{3}\sqrt{\frac{3}{4}}\)
\(=\frac{\sqrt{4}}{\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{\sqrt{4}}\)
\(=\frac{2\sqrt{3}}{\sqrt{3}.\sqrt{3}}+\sqrt{12}-\frac{4}{3}\cdot\frac{\sqrt{3}}{2}\)
\(=\frac{2\sqrt{3}}{3}+2\sqrt{3}-\frac{2\sqrt{3}}{3}\)
\(=2\sqrt{3}\left(\frac{1}{3}+1-\frac{1}{3}\right)\)
\(=2\sqrt{3}\)
So sánh các số sau:
a = 3549 b = √5272 c = √52+√352√72+√492 d = √52−√352√72−√492
=> A < B
\(\frac{\sqrt{7}+7}{\sqrt{7}+1}-\frac{\sqrt{7}-\sqrt{14}}{\sqrt{2}-1}+\frac{2\sqrt{35}-2\sqrt{7}}{1-\sqrt{5}}\)
\(=\frac{\sqrt{7}\left(1+\sqrt{7}\right)}{\sqrt{7}+1}-\frac{\sqrt{7}\left(1-\sqrt{2}\right)}{\sqrt{2}-1}+\frac{2\sqrt{7}\left(\sqrt{5}-1\right)}{1-\sqrt{5}}\)
\(=\frac{\sqrt{7}\left(1+\sqrt{7}\right)}{\sqrt{7}+1}+\frac{\sqrt{7}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}-\frac{2\sqrt{7}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\)
\(=\sqrt{7}+\sqrt{7}-2\sqrt{7}\)
\(=0\)
\(\frac{\sqrt{20}-\sqrt{12}+2}{\sqrt{35}-\sqrt{21}+\sqrt{7}}+\frac{5}{\sqrt{7}}-\sqrt{8-2\sqrt{7}}\)
b) Ta có: \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{5+35}{7+49}=\frac{40}{56}=\frac{5}{7}\) (1)
Lại có: \(\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}=\frac{5-35}{7-49}=\frac{-30}{-42}=\frac{5}{7}\) (2)
Từ biểu thức (1) và biểu thức (2)
=> \(\frac{\sqrt{5^2}+\sqrt{35^2}}{\sqrt{7^2}+\sqrt{49^2}}=\frac{\sqrt{5^2}-\sqrt{35^2}}{\sqrt{7^2}-\sqrt{49^2}}\)