tìm GTNN
3x2 + 4x -5
giúp mik với ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn ơi đề thiếu cái gì rồi , không tìm được giá trị nhỏ nhất đâu:
2x-4x+5=-2x+5 :((
a: =>6x-3x^2-5=4-3x^2-2
=>6x-5=2
=>6x=7
=>x=7/6
b: =>20x+5-12x^2-3x=6x^2-10x+3x-5
=>-12x^2+17x+5-6x^2+7x+5=0
=>-18x^2+24x+10=0
=>x=5/3 hoặc x=-1/3
a,\(A=\left(x+1\right)\left(x+2\right)\left(x+4\right)\left(x+5\right)=\left(x^2+6x+5\right)\left(x^2+6x+8\right)\)
đặt \(x^2+6x+5=t=>t\left(t+3\right)=t^2+3t=t^2+2.\dfrac{3}{2}t+\dfrac{9}{4}-\dfrac{9}{4}\)
\(=\left(t+\dfrac{3}{2}\right)^2-\dfrac{9}{4}\ge-\dfrac{9}{4}< =>t=\dfrac{-3}{2}\)
\(=>A\)\(=-\dfrac{3}{2}\left(-\dfrac{3}{2}+3\right)=-2,25\)
Vậy Min A\(=-2,25\)
b,\(B=-x^2-4x-9y^2-6y-6\)
\(=-\left(x^2+4x+4\right)-\left(3y\right)^2-2.3y-1-1\)
\(=-\left(x+2\right)^2-\left(3y+1\right)^2-1\le-1\)
dấu"=' xảy ra\(< =>x=-2,y=-\dfrac{1}{3}\)
a.
$(x+1)(x+2)(x+4)(x+5)=(x+1)(x+5)(x+2)(x+4)=(x^2+6x+5)(x^2+6x+8)$
$=a(a+3)$ với $a=x^2+6x+5$
$=a^2+3a=(a^2+3a+\frac{9}{4})-\frac{9}{4}$
$=(a+\frac{3}{2})^2-\frac{9}{4}$
$=(x^2+6x+\frac{13}{2})^2-\frac{9}{4}\geq \frac{-9}{4}$
Vậy gtnn của biểu thức là $\frac{-9}{4}$. Giá trị này đạt tại $x^2+6x+\frac{13}{2}=0$
$\Leftrightarrow x=\frac{-6\pm \sqrt{10}}{2}$
Bài 1: \(\sqrt{x^2+2x+5}=\sqrt{\left(x^2+2x+1\right)+4}\)
\(=\sqrt{\left(x+1\right)^2+4}\ge\sqrt{4}=2\)
Dấu "=" xảy ra khi \(x=-1\)
Vậy...
Bài 2:
\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}\)
\(=\left|2x-1\right|+\left|2x-3\right|\)\(=\left|2x-1\right|+\left|3-2x\right|\)
\(\ge\left|2x-1+3-2x\right|=2\)
Dấu "=" xảy ra khi \(\frac{1}{2}\le x\le\frac{3}{2}\)
Vạy....
a) \(\left(x^3+3x^2-8x-20\right)\div\left(x+2\right)\)
\(=\left[\left(x^3+2x^2\right)+\left(x^2+2x\right)-\left(10x+20\right)\right]\div\left(x+2\right)\)
\(=\left(x+2\right)\left(x^2+x-10\right)\div\left(x+2\right)\)
\(=x^2+x-10\) \(\left(x\ne-2\right)\)
b,c bn tự đặt chia
\(\text{3(x^2+\frac{4}{3}+\frac{4}{9}-\frac{49}{9})=3((X+\frac{2}{3})^2}-\frac{49}{9}\)
qua facebook BnoHi mình chỉ trực tiếp
Bài giải
Đặt \(A=3x^2+4x-5\)
\(=x\left(3x+4\right)-5\)
\(A\text{ đạt }GTNN\text{ khi }x\left(3x+4\right)\text{ đạt }GTNN\)
\(\text{Mà }x\left(3x+4\right)\ge0\)
\(\Rightarrow\text{ GNTT của }A=0\)
\(\Leftrightarrow\text{ }x=0\)
Vậy \(GTNN\text{ của }3x^2+4x-5\text{ là }0\)