cho a b c là 3 cạnh của tam giác chứng minh abc>=(b+c-a)(a+c-b)(a+b-c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}=\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\)
\(VT\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=c\)
\(\Rightarrow\) Tam giác là tam giác đều
Ta có :
( b + c - a ) ( b + a - c ) = b2 - ( c - a )2 < b2
( c + a - b ) ( c + b - a ) = c2 - ( a - b ) 2 < c2
( a + b - c ) ( a + c - b ) = a2 - ( b - c )2 < a2
Nhân từng vế ba bất đẳng thức trên ta được
[ ( b + c - a ) ( a + c - b ) ( a + b - c ) ]2 < [ abc ]2
Các biểu thức trong dấu ngoặc vuông đều dương nên
( b + c - a ) ( a + c - b ) ( a + b - c ) < abc
Xảy ra đẳng thức khi và chỉ khi a = b =c
Áp dụng bất đẳng thức tam giác:
\(a+b>c\Rightarrow ac+bc>c^2\)(vì c > 0)
\(b+c>a\Rightarrow ab+ac>a^2\)(vì a > 0)
\(c+a>b\Rightarrow bc+ab>b^2\)(do b > 0)
Do đó: \(2\left(ab+bc+ac\right)>a^2+b^2+c^2\)
\(\)
Biểu thức đề bài cần chứng minh là: \(a^2-b^2-c^2+abc>0\)
Biểu thức đó cũng có thể viết thành: \(a^2+\left(-b\right)^2+\left(-c\right)^2+abc\)
Mà ta biết, một số dù dương hay âm khi bình phương lên cũng sẽ thành một số luôn lớn hơn hoặc bằng 0, áp dụng vào biểu thức trên, ta có
\(a^2\ge0;\left(-b\right)^2\ge0;\left(-c\right)^2\ge0\)
Hơn nữa a;b;c lại là cạnh của tam giác, cạnh của tam giác luôn có số đo dương , vậy cả ba số a;b;c khi bình phương lên đều lớn hơn 0
\(abc\) lại là tích của ba số dương lớn hơn 0 nên biểu thức: \(a^2+\left(-b\right)^2+\left(-c\right)^2+abc\)>0
sử dụng bđt :(x+y)(y+z)(z+x) >= 8xyz (x,y,z>0)
rồi c/m (b+c-a)(a+c-b)(a+b-c) >= abc (đặt b+c-a=x,a+c-b=y,a+b-c=z) là xong
#)Giải :
Ta có : \(\hept{\begin{cases}\left(b+c-a\right)\left(b+a-c\right)=b^2-\left(c-a\right)^2\le b^2\\\left(c+a-b\right)\left(c+b-a\right)=c^2-\left(a-b\right)^2\le c^2\\\left(a+b-c\right)\left(a+c-b\right)=a^2-\left(b-c\right)^3\le a^2\end{cases}}\)
Nhân từng vế ba bđt trên ta được :
\(\left[\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\right]^2\le\left(abc\right)^2\)
\(\Rightarrow\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\le abc\)
Hay \(abc\ge\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)
Xảy ra khi a = b = c
áp dụng bdt cosi cho 2 số dương ta có :
\(\left(b+c-a\right)+\left(a+c-b\right)\ge2\sqrt{\left(b+c-a\right)\left(a+c-b\right)}\)
\(\Leftrightarrow\left[\left(b+c-a\right)+\left(a+c-b\right)\right]^2\ge4\left(b+c-a\right)\left(a+c-b\right)\)
\(\Leftrightarrow c^2\ge\left(b+c-a\right)\left(a+c-b\right)\)(1)
tương tự ta có: \(a^2\ge\left(b+a-c\right)\left(c+a-b\right)\)(2)
\(b^2\ge\left(b+c-a\right)\left(b+a-c\right)\)(3)
từ (1) (2) (3) suy ra dpcm