K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2019

1) (2x - 1)2 - (x + 1)(3x - 2)

= 4x2 - 4x + 1 - 3x2 - x + 2

= (4x2 - 3x2) + (-4x - x) + (1 + 2)

= x2 - 5x + 3

2) (3x - 2)(-x) - (-2x)2

= -3x2 + 2x - 4x2

= -7x2 + 2x

27 tháng 12 2020

a) Ta có: \(\dfrac{2x^2-2x}{x-1}\)

\(=\dfrac{2x\left(x-1\right)}{x-1}\)

=2x

b) Ta có: \(\dfrac{x^2+2x+1}{3x^2+3x}\)

\(=\dfrac{\left(x+1\right)^2}{3x\left(x+1\right)}\)

\(=\dfrac{x+1}{3x}\)

c) Ta có: \(\dfrac{x}{3x-3}+\dfrac{1}{x^2-1}\)

\(=\dfrac{x}{3\left(x-1\right)}+\dfrac{1}{\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x+1+3}{3\left(x-1\right)\left(x+1\right)}\)

\(=\dfrac{x+4}{3x^2-3}\)

27 tháng 12 2020

a, \(\dfrac{2x^2-2x}{x-1}=\dfrac{2x\left(x-1\right)}{x-1}=2x\) ( đk : \(x\ne1\) )

b,\(\dfrac{x^2+2x+1}{3x^2+3x}=\dfrac{\left(x+1\right)^2}{3x\left(x+1\right)}=\dfrac{x+1}{3x}\) ( đk : \(x\ne-1\) )

c

 

=

1: \(=6x^2+2x-15x-5-x^2+6x-9+4x^2+20x+25-27x^3-27x^2-9x-1\)

=-27x^3-18x^2+4x+10

2: =4x^2-1-6x^2-9x+4x+6-x^3+3x^2-3x+1+8x^3+36x^2+54x+27

=7x^3+37x^2+46x+33

5:

\(=25x^2-1-x^3-27-4x^2-16x-16-9x^2+24x-16+\left(2x-5\right)^3\)

\(=8x^3-60x^2+150-125+12x^2-x^3+8x-60\)

=7x^3-48x^2+8x-35

21 tháng 7 2021

1) `2x(3x-1)-(2x+1)(x-3)`

`=6x^2-2x-2x^2+6x-x+3`

`=4x^2+3x+3`

2) `3(x^2-3x)-(4x+2)(x-1)`

`=3x^2-9x-4x^2+4x-2x+2`

`=-x^2-7x+2`

3) `3x(x-5)-(x-2)^2-(2x+3)(2x-3)`

`=3x^2-15x-(x^2-4x+4)-(4x^2-9)`

`=3x^2-15x-x^2+4x-4-4x^2+9`

`=-2x^2-11x+5`

4) `(2x-3)^2+(2x-1)(x+4)`

`=4x^2-12x+9+2x^2+8x-x-4`

`=6x^2-5x+5`

a: Ta có: \(\left(x+5\right)^2-4x\left(2x+3\right)^2-\left(2x-1\right)\left(x+3\right)\left(x-3\right)\)

\(=x^2+10x+25-4x\left(4x^2+12x+9\right)-\left(2x-1\right)\left(x^2-9\right)\)

\(=x^2+10x+25-16x^3-48x^2-36x-2x^3+18x+x^2-9\)

\(=-18x^3-46x^2-8x+16\)

15 tháng 7 2023

\(A=\left(x+2\right)^2-\left(x+3\right)\left(x-1\right)+15\)

\(A=x^2+4x+4-\left(x^2-x+3x-3\right)+15\)

\(A=\left(x^2-x^2\right)+\left(4x+x-3x\right)+\left(15+3+4\right)\)

\(A=2x+22\)

______________________

\(B=\left(x+1\right)\left(x-1\right)-\left(x+4\right)^2-6\)

\(B=\left(x^2-1\right)-\left(x^2+8x+16\right)-6\)

\(B=\left(x^2-x^2\right)-8x-\left(1+16+6\right)\)

\(B=-8x-23\)

_________________

\(C=\left(3x+2\right)\left(3x-2\right)-\left(3x-1\right)^2\)

\(C=\left[\left(3x\right)^2-2^2\right]-\left(9x^2-6x+1\right)\)

\(C=\left(9x^2-9x^2\right)+6x-\left(4+1\right)\)

\(C=6x-5\)

15 tháng 7 2023

a) Rút gọn biểu thức A = (x + 2)2 - (x + 3)(x - 1) + 15:

Bắt đầu bằng việc mở ngoặc:
A = (x^2 + 4x + 4) - (x^2 + 2x - 3x - 3) + 15

Tiếp theo, kết hợp các thành phần tương tự:
A = x^2 + 4x + 4 - x^2 - 2x + 3x + 3 + 15

Tiếp tục đơn giản hóa:
A = x^2 - x^2 + 4x - 2x + 3x + 4 + 3 + 15

Kết quả cuối cùng:
A = 5x + 19

b) Rút gọn biểu thức B = (x - 1)(x + 1) - (x + 4)2 - 6:

Bắt đầu bằng việc mở ngoặc:
B = (x^2 - 1) - (x^2 + 4x + 4) - 6

Tiếp theo, kết hợp các thành phần tương tự:
B = x^2 - 1 - x^2 - 4x - 4 - 6

Tiếp tục đơn giản hóa:
B = x^2 - x^2 - 4x - 4 - 6 - 1

Kết quả cuối cùng:
B = -4x - 11

c) Rút gọn biểu thức C = (3x - 2)(3x + 2) - (3x - 1)2:

Bắt đầu bằng việc mở ngoặc:
C = (9x^2 - 4) - (9x^2 - 6x + 1)

Tiếp theo, kết hợp các thành phần tương tự:
C = 9x^2 - 4 - 9x^2 + 6x - 1

Tiếp tục đơn giản hóa:
C = 9x^2 - 9x^2 + 6x - 4 - 1

Kết quả cuối cùng:
C = 6x - 5

a: Ta có: \(\left(x^2-2x+2\right)\left(x^2-2\right)\left(x^2+2x+2\right)\left(x^2+2\right)\)

\(=\left(x^4-4\right)\left[\left(x^2+2\right)^2-4x^2\right]\)

\(=\left(x^4-4\right)\left(x^4+4x^2+4-4x^2\right)\)

\(=\left(x^4-4\right)\cdot\left(x^4+4\right)\)

\(=x^8-16\)

b: Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2+3x^2-3x\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-x^2+2x-1+3x^2-3x\left(x^2-1\right)\)

\(=3x^2+4x-3x^3+3x\)

\(=-3x^3+3x^2+7x\)

28 tháng 10 2023

\(a,\left(x-5\right)\left(2x+1\right)-2x\left(x-3\right)\\ =x.2x-5.2x+x-5-2x.x-2x.\left(-3\right)\\ =2x^2-10x+x-5-2x^2+6x\\ =2x^2-2x^2-10x+x+6x-5\\ =-3x-5\)

\(b,\left(2+3x\right)\left(2-3x\right)+\left(3x+4\right)^2\\ =\left[2^2-\left(3x\right)^2\right]+\left[\left(3x\right)^2+2.3x.4+4^2\right]\\=4-9x^2+\left(9x^2+24x+16\right)\\ =24x+20\)

1 tháng 11 2023

Anh ơi cho em hỏi về môn sinh với là so sánh cấu tạo và chức năng mARN ở người ạ

21 tháng 10 2021

a: Ta có: \(3x\left(2x+1\right)+\left(2x-3\right)\left(x+1\right)\)

\(=6x^2+3x+2x^2+2x-3x-3\)

\(=8x^2+2x-3\)

a: \(=\dfrac{\left(x+1\right)\left[\left(3x-2\right)-\left(2x+5\right)\left(x-1\right)\right]}{x+1}\)

=3x-2-2x^2+2x-5x+5

=-2x^2+3

b: \(=\left(2x+1-3+x\right)^2=\left(3x-2\right)^2=9x^2-12x+4\)

c: =x^3-3x^2+3x-1-x^3-1+9x^2-1

=6x^2+3x-3

24 tháng 6 2023

\(a,\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x^2-1\right)\right]:\left(x+1\right)\)

\(=\left[\left(3x-2\right)\left(x+1\right)-\left(2x+5\right)\left(x-1\right)\left(x+1\right)\right]:\left(x+1\right)\)

\(=\left[\left(x+1\right)\left(3x-2-\left(2x+5\left(x-1\right)\right)\right)\right]:\left(x+1\right)\)

\(=\left[\left(x+1\right)\left(3x-2-2x^2+2x-5x+5\right)\right]:\left(x+1\right)\)
\(=\left[\left(x+1\right)\left(-2x^2+3\right)\right].\dfrac{1}{x+1}\)

\(=-2x^2+3\)

\(b,\left(2x+1\right)^2-2\left(2x+1\right)\left(3-x\right)\)

\(=\left(2x+1\right)\left[\left(2x+1\right)-2\left(3-x\right)\right]\)

\(=\left(2x+1\right)\left(2x+1-6+2x\right)\)

\(=\left(2x+1\right)\left(4x-5\right)\)

\(c,\left(x-1\right)^3-\left(x+1\right)\left(x^2-x+1\right)-\left(3x+1\right)\left(1-3x\right)\)

\(=x^3-3x^2+3x-1-x^3-1-\left(3x-9x^2+1-3x\right)\)

\(=-3x^2+3x-2-3x+9x^2-1+3x\)

\(=6x^2+3x-3\)