tìm x, biết
a) 4 - ( 3x + 2 ) = 7x - ( 9 - x )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(55-4x-4\left(-x+3\right)=6-2\left(-8-3x\right)\)
\(55-4x+4x-12=6+16+6x\)
\(43-6-16=6x\)
\(6x=21\)
\(x=3,5\)
b) \(-5\left(-2x-6\right)-9\left(4-7x\right)=51-3x+6\left(x-9\right)\)
\(10x+30-36+63x=51-3x+6x-54\)
\(73x-6=-3+3x\)
\(73x-3x=-3+6\)
\(70x=3\)
\(x=\frac{3}{70}\)
c) \(93+\left|6-3x\right|-39=231\)
\(\left|6-3x\right|+54=231\)
\(\left|6-3x\right|=177\)
\(\Rightarrow\orbr{\begin{cases}6-3x=177\\6-3x=-177\end{cases}}\Rightarrow\orbr{\begin{cases}3x=6-177\\3x=6+177\end{cases}}\Rightarrow\orbr{\begin{cases}3x=-171\\3x=183\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-57\\x=61\end{cases}}\)
a, - 2 .( x + 6 ) + 6 . ( x - 10 ) = 8
- 2x - 12 + 6x - 60 = 8
4x - 72 = 8
4x = 8 + 72
4x = 80
x = 20
b, - 4 . ( 2x + 9 ) - ( - 8x + 3 ) - ( x + 13 ) = 0
- 8x - 36 + 8x - 3 - x - 13 = 0
- x - 52 = 0
x = - 52
c, 7x . ( 2 + x ) - 7x . ( x + 3 ) = 14
7x . ( 2 + x - x - 3 ) = 14
7x . ( - 1 ) = 14
7x = 14 : ( - 1 )
7x = - 14
x = - 2
d, 2 . ( 5 + 3x ) + x = 31
10 + 6x + x = 31
10 + 7x = 31
7x = 31 - 10
7x = 21
x = 3
a)-2(x+6)+6(x-10)=8
-2x+-12+6x+-60=8
4x+-72=8
4x=80
x=80:4
x=20
b)-4(2x+9)-(-8x+3)-(x+13)=0
-8x+-36+8x-3+x-13=0
(-8x+8x)+-36+-3+x-13=0
0+-52+x=0
x=0-(-52)
x=-52
c)7x(2+x)-7x(x+3)=14
14x+7x2
1.CMR:
a) 3.\(\left(x^2+y^2+z^2\right)-\left(x-y\right)^2\) \(-\left(y-z\right)^2-\left(z-x\right)^2=\left(x+y+z\right)^2\)
a) ( x - 3 )2 - 4 = 0
<=> ( x - 3 )2 = 4
<=> \(\orbr{\begin{cases}\left(x-3\right)^2=2^2\\\left(x-3\right)^2=\left(-2\right)\end{cases}}\)
<=> \(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
<=> \(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
Vậy S = { 5 ; 1 }
b) x2 - 9 = 0
<=> x2 = 9
<=> \(\orbr{\begin{cases}x^2=3^2\\x^2=\left(-3\right)^2\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-3\end{cases}}\)
Vậy S = { 3 ; -3 }
c) x( x - 2x ) - x2 - 8 = 0
<=> x2 - 2x2 - x2 - 8 = 0
<=> -2x2 - 8 = 0
<=> -2x2 = 8
<=> x2 = -4 ( vô lí )
<=> x = \(\varnothing\)
Vậy S = { \(\varnothing\)}
d) 2x( x - 1 ) - 2x2 + x - 5 = 0
<=> 2x2 - 2x - 2x2 + x - 5 = 0
<=> -x - 5 = 0
<=> -x = 5
<=> x = -5
Vậy S = { -5 }
e) x( x - 3 ) - ( x + 1 )( x - 2 ) = 0
<=> x2 - 3x - ( x2 - x - 2 ) = 0
<=> x2 - 3x - x2 + x + 2 = 0
<=> - 2x + 2 = 0
<=> -2x = -2
<=> x = 1
Vậy S = { 1 }
f) x( 3x - 1 ) - 3x2 - 7x = 0
<=> 3x2 - x - 3x2 - 7x = 0
<=> -8x = 0
<=> x = 0
Vậy S = { 0 }
a) 4 - ( 3x + 2 ) = 7x - ( 9 - x )
<=> 4-3x-2=7x-9+x
<=>11x=11
<=> x=1
\(4-\left(3x+2\right)=7x-\left(9-x\right)\)
\(4-3x-2=7x-9+x\)
\(4-2-3x=7x+x-9\)
\(2-3x=8x-9\)
\(3x+8x=2+9\)
\(11x=11\)
\(x=11\div11\)
\(x=1\)