cho a,b thỏa mãn 3a+4b=5. Chứng minh rằng a^2+b^2>=1
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
13 tháng 7 2020
\(\Sigma_{sym}a^4b^4\ge\frac{\left(\Sigma_{sym}a^2b^2\right)^2}{3}\ge\frac{\left(\Sigma_{sym}ab\right)^4}{27}\ge\frac{a^2b^2c^2\left(a+b+c\right)^2}{3}=3a^4b^4c^4\)
13 tháng 7 2020
\(\Sigma\frac{a^5}{bc^2}\ge\frac{\left(a^3+b^3+c^3\right)^2}{abc\left(a+b+c\right)}\ge\frac{\left(a^2+b^2+c^2\right)^4}{abc\left(a+b+c\right)^3}\ge\frac{\left(a+b+c\right)^6\left(a^2+b^2+c^2\right)}{27abc\left(a+b+c\right)^3}\)
\(\ge\frac{\left(3\sqrt[3]{abc}\right)^3\left(a^2+b^2+c^2\right)}{27abc}=a^2+b^2+c^2\)
\(a^2+b^2=\frac{9a^2}{9}+\frac{16b^2}{16}\ge\frac{\left(3a+4b\right)^2}{9+16}=\frac{5^2}{25}=1\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\frac{3a}{9}=\frac{4b}{16}=\frac{3a+4b}{9+16}=\frac{5}{25}=\frac{1}{5}\)\(\Leftrightarrow\)\(\hept{\begin{cases}a=\frac{3}{5}\\b=\frac{4}{5}\end{cases}}\)