Cho x/z=z/y. Chứng minh rằng : x^2+z^2/y^2+z^2=x/y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
+) TH1: x + y + z = 0 => x + y = -z ; x + z = -y; y + z = -x
Do đó: \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=\frac{x}{-x}+\frac{y}{-y}=\frac{z}{-z}=-3\)\(\ne1\)loại
+) TH2: x + y + z \(\ne0\)
\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=1\)
<=> \(\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{x+y}=x+y+z\)
<=> \(\frac{x^2}{y+z}+x+\frac{y^2}{z+x}+y+\frac{z^2}{x+y}+z=x+y+z\)
<=> \(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}=0\)( đpcm)
Ta có : x/z = z/y ( y,z khác 0 )
⇒ z^2 = xy
⇒ x^2+z^2/y^2+z^2 = x^2+xy/y^2+xy
= x(x + y) / y(y + x)
= x/y
Vậy x^2+z^2/y^2+z^2 = x/y
( đpcm )
Chứng minh rằng:
(y-z)/(x-y)(x-z) + (z-x)/(y-z)(y-x) + (x-y)/(z-x)(z-y) = 2/(x-y) + 2/(y-z) + 2/(z-x)
Chứng minh rằng:
(y-z)/(x-y)(x-z) + (z-x)/(y-z)(y-x) + (x-y)/(z-x)(z-y) = 2/(x-y) + 2/(y-z) + 2/(z-x)
Đặt \(\frac{x}{z}=\frac{z}{y}=k\)
\(\Rightarrow\hept{\begin{cases}x=zk\\z=yk\end{cases}}\)
Khi đó : \(\frac{x^2+z^2}{y^2+z^2}=\frac{\left(zk\right)^2+z^2}{y^2+\left(yk\right)^2}=\frac{z^2\left(k^2+1\right)}{y^2\left(k^2+1\right)}=\frac{z^2}{y^2}=\frac{\left(y.k\right)^2}{y^2}=k^2\)
\(\frac{x}{y}=\frac{y.k^2}{y}=k^2\)
=> \(\frac{x^2+z^2}{y^2+z^2}=\frac{x}{y}\left(\text{đpcm}\right)\)
\(\frac{x}{z}=\frac{z}{y}\)
cmr: \(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)
\(\frac{x}{z}=\frac{z}{y}\Rightarrow\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2\)
áp dụng t/c dãy tỉ số = nhau
\(\left(1\right)\left(\frac{x}{z}\right)^2=\left(\frac{z}{y}\right)^2=\frac{\left(x^2+z^2\right)}{\left(z^2+y^2\right)}\)
vì \(\left(2\right)\frac{x}{z}=\frac{z}{y}\Rightarrow\frac{x}{y}=\frac{z}{z}\)
từ (1) và (2) =>\(\left(\frac{x^2+z^2}{y^2+z^2}\right)=\frac{x}{y}\)
Bạn đăng bài này 2 lần luôn. Khiết Băng
Tại mình ko biết làm ! Bạn giúp mình với