tìm a,b,c biết:
abc -cba= 99
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có sai đề hông Queen?
100a+10b+c +100c+10b+a = 1444.
101(a+c) +20b = 1444.
mà a+c có số tận cùng là 4 nên:
:D
a, Ta có: aaa¯¯¯¯¯¯¯¯=a.111=a.3.37aaa¯=a.111=a.3.37 chia hết cho a và chia hết cho 37 b, Ta có: Vì a, b là hai số tự nhiên nên a,b có các TH sau: TH1: a, b cùng tính chẵn lẻ=> (a+b) là 1 số chẵn nhưu vậy a+b chia hết cho 2 TH2: a, b khác tính chẵn lẻ thì 1 trong 2 số phải có 1 số chẵn khi đó số đó chia hết cho 2
Trung bình cộng của abc và cba là \(\frac{\overline{abc}+\overline{cba}}{2}\). Ta có:
\(\frac{\overline{abc}+\overline{cba}}{2}=444\)
\(\Rightarrow\left(100a+10b+c\right)+\left(100c+10b+a\right)=888\)
\(\Rightarrow101a+20b+101c=888\)
\(\Rightarrow101\left(a+c\right)+20b=888\)
Vì 20b \(\le\) 180 nên 101(a + c) \(\ge\) 708
\(\Rightarrow a+c\ge8\) (1)
Lại có: 101(a + c) \(\le\) 888 nên a + c \(\le\) 8 (2)
Từ (1) và (2) \(\Rightarrow a+c=8\)
\(\Rightarrow b=4\)
Do a > 4 (vì a > b) và a \(\le\) 8 nên a = 5; 6; 7 hoặc 8. Thử từng trường hợp, ta được c lần lượt là 3; 2; 1; 0, các số này đều bé hơn b = 4.
Bài toán có 4 đáp số: 543; 642; 741; 840.
a,
abc chia hết cho 45 nên abc chia hết cho 5 và 9 nên c=0 hoặc 5 mà c khác 0 nên c=5
ta có:
ab5-5ba=396
ta viết lại biểu thức như sau:
396+5ba =ab5
6+a tận cùng là 5 nên a=9
nên ta lại có
abc=9b5 chia hết cho 9 và 5
nên 9+b+5 chia hết cho 9
nên b=4
suy ra abc=945
Đ/S:945
b,
gọi 3 số phải tìm là a, b, c giả sử a > b > c (a, b, c khác 0)
vì a> b> c nên 2 số lớn nhất là: abc và acb
có abc + acb = 1444
a x 200 + 11 (b + c)= 1444
a < 8 vì 8 x 200 = 1600 > 1444
với a = 7 có
7 x 200 + 11 (b + c) = 1444
11 (b +c )= 44
b + c = 4
vì b và c là hai chữ số khác nhau và khác 0 nên b = 3, c= 1
các chữ số phải tìm là 7, 3, 1
các trường hợp a < 7 thì có 1444 - a x 200 không chia hết cho 11
Vậy các số phải tìm là 1, 3, 7
a,
abc chia hết cho 45 nên abc chia hết cho 5 và 9 nên c=0 hoặc 5 mà c khác 0 nên c=5
ta có:
ab5-5ba=396
ta viết lại biểu thức như sau:
396+5ba =ab5
6+a tận cùng là 5 nên a=9
nên ta lại có
abc=9b5 chia hết cho 9 và 5
nên 9+b+5 chia hết cho 9
nên b=4
suy ra abc=945
Đ/S:945
cái này đâu có chứng minh Nguyễn Tuấn Tài
100a +10b +c - 100c - 10b - a = 99
99 (a -c) = 99
=> a -c =1
Vậy abc = {1b0 ; 2b1; 3b2 ; 4b3; 5b4; 6b5 ; 7b6 ; 8b7; 9b8 } với b thuộc {0 ;1;2;3;4;5;6;7;8;9}