K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2016

1) =a^2 -6a +10

   = (a-3)^2 +1

ta có (a-3)^2 lớn hơn hoặc bằng 0

  suy ra (a-3)^2 +1 lớn hơn hoặc bằng 1

đấu bằng xảy ra khi a-3=0

                        suy ra a=3

9 tháng 1 2018

\(B=\frac{1.2+2.4+3.6+4.8+5.10}{3.4+6.8+9.12+12.16+15.20}\)

\(B=\frac{1.2+2^2.1.2+3^21.2+4^2.1.2+5^2.1.2}{3.4+2^23.4+3^23.4+4^23.4+5^23.4}\)

\(B=\frac{2.\left(1+2^2+3^2+4^2+5^2\right)}{12\left(1+2^2+3^2+4^2+5^2\right)}\)\(\Rightarrow B=\frac{2}{12}=\frac{1}{6}\)

24 tháng 7 2016

Trước hết , ta cần chứng minh \(\frac{1}{\sqrt{n}+\sqrt{n+1}}=\sqrt{n+1}-\sqrt{n}\)(*) (Bạn tự chứng minh)

Đặt \(A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(\Rightarrow2A=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{79}+\sqrt{80}}\)

\(>\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\)

Áp dụng (*) :\(\Rightarrow2A>\left(\sqrt{2}-\sqrt{1}\right)+\left(\sqrt{3}-\sqrt{2}\right)+\left(\sqrt{4}-\sqrt{3}\right)+\left(\sqrt{5}-\sqrt{4}\right)+...+\left(\sqrt{80}-\sqrt{79}\right)+\left(\sqrt{81}-\sqrt{80}\right)\)

\(\Rightarrow2A>\sqrt{81}-1=8\Rightarrow A>4\)(đpcm)

19 tháng 4 2019

Đề bài sai nhé bạn