K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Cho mình hỏi xem cách làm này của mình có đúng không nhé.Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)4 = 40y+1 Bài giải:Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì...
Đọc tiếp

Cho mình hỏi xem cách làm này của mình có đúng không nhé.

Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)= 40y+1 

Bài giải:

Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.

- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)

- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)

- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)

- Nếu n=4 thì 40y=255 => y=6,375 là số hữu tỉ và n<y (loại)

- Nếu n=5 thì 40y=624 => y=15,6 là số hữu tỉ và n<y (loại)

- Nếu n=6 thì 40y=1295 => y=32,375 là số hữu tỉ và n<y (loại)

- Nếu n=7 thì y=60 (loại vì n<y).

Vì n,y là 2 số nguyên dương nên từ phần trên suy ra n>7 thì không có giá trị nào của y thỏa mãn.

Vậy phương trình có 2 cặp nghiệm nguyên (x;y) là: (1;0) ; (1;2).

0
Cho mình hỏi xem cách làm này của mình có đúng không nhé.Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)4 = 40y+1 Bài giải:Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì...
Đọc tiếp

Cho mình hỏi xem cách làm này của mình có đúng không nhé.

Đề bài: Tìm nghiệm nguyên dương của phương trình (x+y)= 40y+1 

Bài giải:

Đặt x+y=n với n>0 và n là số nguyên. Phương trình đã cho tương đương với: n4=40y+1.Vì x+y>y nên n>y.

- Nếu n=1 thì y=0 (thỏa mãn n>y) =>(x+y)4=1 mà y=0 => x=1 (vì x>0)

- Nếu n=2 thì 40y=15 => y=2,(6) là số hữu tỉ (loại)

- Nếu n=3 thì y=2 (thỏa mãn n>y) => (x+y)4=81 => x=1 (vì x>0)

- Nếu n=4 thì 40y=255 => y=6,375 là số hữu tỉ và n<y (loại)

- Nếu n=5 thì 40y=624 => y=15,6 là số hữu tỉ và n<y (loại)

- Nếu n=6 thì 40y=1295 => y=32,375 là số hữu tỉ và n<y (loại)

- Nếu n=7 thì y=60 (loại vì n<y).

Vì n,y là 2 số nguyên dương nên từ phần trên suy ra n>7 thì không có giá trị nào của y thỏa mãn.

Vậy phương trình có 2 cặp nghiệm nguyên (x;y) là: (1;0) ; (1;2).

1
29 tháng 6 2016

bai ban giai dung roi do

12 tháng 7 2017

để\(\frac{2x-1}{3+x}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}2x-1< 0\\3+x>0\end{cases}}\\\hept{\begin{cases}2x-1>0\\3+x< 0\end{cases}}\end{cases}}\Leftrightarrow\orbr{\begin{cases}\hept{\begin{cases}x< \frac{1}{2}\\x>-3\end{cases}\left(ktm\right)}\\\hept{\begin{cases}x>\frac{1}{2}\\x< -3\end{cases}\left(tm\right)}\end{cases}}\)

Vậy -3<x<1/2

13 tháng 7 2017

Để 2x-1/3+x<0 

TH1 : 2x-1<0<=>2x<1<=>x<1/2

    và 3+x>0<=>x> -3 ( ktm)

TH2: 2x-1>0<=> 2x>1<=>x>1/2

    và 3+x<0<=>x< -3  (tm)

vậy -3<x<1/2

mk viết thường nên có chỗ nào ko hiểu thì ib cho mk nha nhớ đó

7 tháng 10 2015

phân tích đúng ko 

L i k e đi

12 tháng 2 2016

 từ x^2+y^2+xy=1 => (x - 1/2*y)^2 + 3/4*y^2 = 1 
đặt x - 1/2*y = sina và √3/2*y = cosa <> y = 2cosa / √3 và x = sina + cosa /√3
thay vào b ta có 
b = (sina + cosa/√3)^2 - ( sina + cosa/√3). 2cosa/√3 + 8/3*(cosa)^2 
= (sina)^2 + sin2a/√3 + (cosa)^2/3 - sin2a/√3 - 2/3*(cosa)^2 + 8/3*(cosa)^2 
= (sina)^2 + 7(cosa)^2 / 3 = 1+ 4(cosa)^2 / 3 = 1 + 2(1 + cos2a) / 3 = 5/3 + 2cos2a/ 3 
=> 1=< b <=7/3 
+ min = 1 khi cos2a = -1 hay cosa = 0 <> y = 0 và x = +- 1 
+ max = 7 / 3 khi cos2a = 1 hay sina = 0 <> x = 1 + 1/√3 và y = 2 / √3 hoạc x = 1 - 1 / √3 
và y = -2 / √3

12 tháng 2 2016

Thanks pạn nha!!!

 

16 tháng 10 2015

Dat x/2=y/4=k la dc ma

X=1;y=2 nhe bn!

 

28 tháng 10 2023

4:

(x+1)(y-2)=5

=>\(\left(x+1;y-2\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)

=>\(\left(x,y\right)\in\left\{\left(0;7\right);\left(4;3\right);\left(-2;-3\right);\left(-6;1\right)\right\}\)

27 tháng 12 2023

A, Ta có : 2xy + x + y = 7

=> 2(2xy + x + y) = 2 . 7

=> 4xy + 2x + 2y = 14

=> (4xy + 2x) + 2y + 1 = 14 + 1

=> 2x(2y + 1) + (2y + 1) = 15

=> (2x + 1)(2y + 1) = 15

=> 2x + 1;2y + 1 ∈ Ư(15) ∈ {-15;-5;-3;-1;1;3;5;15}

Vậy ta có bảng : 

2x + 1-15-1-3-515135
2y + 1-1-15-5-311553
x-8-1-2-37012
y-1-8-3-20721

=> (x;y) = (-8;-1);(-1;-8);(-2;-3);(-3;-2);(7;0);(0;7);(1;2);(2;1)