K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2021

giúp mình với :<

20 tháng 10 2021

cái j vậy :)

3 tháng 11 2019

a) Vì BCNN(5;3;8)=120

\(\Rightarrow5a=8b=3c\Leftrightarrow\frac{5a}{120}=\frac{8b}{120}=\frac{3c}{120}=\frac{a}{24}=\frac{b}{15}=\frac{c}{40}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{24}=\frac{b}{15}=\frac{c}{40}=\frac{a}{24}=\frac{2b}{30}=\frac{c}{40}=\frac{a-2b+c}{24-30+40}=\frac{34}{34}=1\)

\(\Rightarrow\left\{{}\begin{matrix}a=1.24=24\\b=1.15=15\\c=1.40=40\end{matrix}\right.\)

Vậy...

b)Có: \(3a=7b\Leftrightarrow\frac{a}{7}=\frac{b}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\frac{a}{7}=\frac{b}{3}=\frac{a^2-b^2}{49-9}=\frac{160}{40}=4\)

\(\Rightarrow\left\{{}\begin{matrix}a=4.7=28\\b=4.3=12\end{matrix}\right.\)

Vậy...

c) Vì BCNN(15;10;6)=30

\(\Rightarrow15a=10b=6c\Leftrightarrow\frac{15a}{30}=\frac{10b}{30}=\frac{6c}{30}=\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Đặt \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\Rightarrow\left\{{}\begin{matrix}a=2k\\b=3k\\c=5k\end{matrix}\right.\)

Thay\(a=2k;b=3k;c=5k\) vào \(abc=-1920\), ta có:

\(2k.3k.5k=-1920\\ \Leftrightarrow30k^3=-1920\\ \Leftrightarrow k^3=-64\\ \Leftrightarrow k^3=\left(-4\right)^3\\ \Leftrightarrow k=-4\)

\(\Rightarrow\left\{{}\begin{matrix}a=-4.2=-8\\b=-4.3=-12\\c=-4.5=-20\end{matrix}\right.\)

Vậy...

3 tháng 11 2019

Tìm a b c biết 5a = 8b = 3c và a - 2b + c = 34,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

24 tháng 8 2016

b) 5a=8b=3c => a/(1/5) =b/(1/8) =c/(1/3) 
=> a/(1/5) =2b/(1/4) =c/(1/3) = (a-2b+c)/ (1/5 -1/4 +1/3)=34/(17/60)=120 
a/(1/5) =120 =>a=120x1/5=24 
2b/(1/4) =120 hay 8.b=120 =>b=120:8=15 
c/(1/3) =120 =>c=120x1/3=40

mấy câu còn lại dễ nhưng mk ko thích làm

8 tháng 9 2016

Có: 15a=10b=6c

=>\(\frac{a}{10}=\frac{b}{15};\frac{b}{6}=\frac{c}{10}\)

=>\(\frac{a}{20}=\frac{b}{30};\frac{b}{30}=\frac{c}{50}\Rightarrow\)\(\frac{a}{20}=\frac{b}{30}=\frac{c}{50}\)

Đặt \(\frac{a}{20}=\frac{b}{30}=\frac{c}{50}=k\)

=>\(a=20k;b=30k;c=50k\)

Mà abc=-1920 

<=>\(20k\cdot30k\cdot50k=-1920\)

\(\Leftrightarrow k^3=-\frac{8}{125}\)

\(\Leftrightarrow k=-\frac{2}{5}\)

\(\Leftrightarrow\begin{cases}a=20k=-8\\b=30k=-12\\c=50k=-20\end{cases}\)

Ta có:

\(\dfrac{tanA}{tan^3B}=\dfrac{tanA}{tanB}.\dfrac{1}{tan^2B}=\dfrac{\dfrac{sinA}{cosA}}{\dfrac{sinB}{cosB}}.\dfrac{cos^2B}{sin^2B}\)

\(=\dfrac{sinA}{sinB}.\dfrac{cosB}{cosA}.\dfrac{cos^2B}{sin^2B}\)

\(=\dfrac{a}{b}.\dfrac{\dfrac{a^2+c^2-b^2}{2ac}}{\dfrac{b^2+c^2-a^2}{2bc}}.\dfrac{\left(\dfrac{a^2+c^2-b^2}{2ac}\right)^2}{1-\left(\dfrac{a^2+c^2-b^2}{2ac}\right)^2}\)

\(=\dfrac{a^2+c^2-b^2}{b^2+c^2-a^2}.\dfrac{\left(a^2+c^2-b^2\right)^2}{\left(2ac\right)^2-\left(a^2+c^2-b^2\right)^2}\)

\(=\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}.\dfrac{1}{\left[\left(a+c\right)^2-b^2\right]\left[b^2-\left(a-c\right)^2\right]}\)

\(=\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}.\dfrac{1}{\left(a+b+c\right)\left(a+c-b\right)\left(b+c-a\right)\left(a+b-c\right)}\)

Biến đổi tương tự, ta có BĐT tương đương với BĐT đã cho:

\(\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}+\dfrac{\left(a^2+b^2-c^2\right)^3}{a^2+c^2-b^2}+\dfrac{\left(b^2+c^2-a^2\right)^3}{a^2+b^2-c^2}\ge\left(a+b+c\right)\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)

Ta có BĐT phụ sau:

\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}\ge xy+yz+xz\left(\text{*}\right)\) với \(x,y,z>0\)

Chứng minh:

Áp dụng BĐT cộng mẫu:

\(\dfrac{x^3}{y}+\dfrac{y^3}{z}+\dfrac{z^3}{x}=\dfrac{x^4}{xy}+\dfrac{y^4}{yz}+\dfrac{z^4}{xz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+yz+xz}\ge\dfrac{\left(xy+yz+xz\right)^2}{xy+yz+xz}=xy+yz+xz\)(đpcm)

Đẳng thức xảy ra khi và chỉ khi \(x=y=z\)

Áp dụng BĐT \(\left(\text{*}\right)\), với đk \(\Delta ABC\) có ba góc nhọn, ta có:

\(\dfrac{\left(a^2+c^2-b^2\right)^3}{b^2+c^2-a^2}+\dfrac{\left(a^2+b^2-c^2\right)^3}{a^2+c^2-b^2}+\dfrac{\left(b^2+c^2-a^2\right)^3}{a^2+b^2-c^2}\ge\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)+\left(a^2+b^2-c^2\right)\left(b^2+c^2-a^2\right)+\left(b^2+c^2-a^2\right)\left(a^2+c^2-b^2\right)\)

Ta chứng minh được:

\(\left(a^2+c^2-b^2\right)\left(a^2+b^2-c^2\right)+\left(a^2+b^2-c^2\right)\left(b^2+c^2-a^2\right)+\left(b^2+c^2-a^2\right)\left(a^2+c^2-b^2\right)=\left(a+b+c\right)\left(b+c-a\right)\left(a+c-b\right)\left(a+b-c\right)\)

\(=-a^4-b^4-c^4+2a^2b^2+2b^2c^2+2a^2c^2\)

Vậy ta có BĐT cần chứng minh, đẳng thức xảy ra khi và chỉ khi \(\widehat{A}=\widehat{B}=\widehat{C}=60^0\)

11 tháng 11 2018

\(15a=10b=6c\Rightarrow c=2,5k;b=1,5k;a=1k\)

\(\Rightarrow a+b+c=2,5k+1,5k+1k=5k=10\Rightarrow k=10:5=2\)

\(\Rightarrow c=2.2,5=5;b=2.1,5=3;a=2.1=2\)

\(Vậy:a=2;b=3;c=5\)

\(15a=10b=6c\Rightarrow1k=1,5k=2,5k\)

\(\Rightarrow a+b+c=1k+1,5k+2.5k=5k=10\)

\(\Rightarrow k=10\div5=2\Rightarrow k=2\)

\(\Rightarrow\hept{\begin{cases}a=2\\b=3\\c=5\end{cases}}\)