\(Cho\sqrt{1+x}+\sqrt{1+y}=2\sqrt{1+a}\)
\(CMR:x+y\ge2a\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Schwartz , ta có :
\(\left(1.\sqrt{1+x}+1.\sqrt{1+y}\right)^2\le\left(1^2+1^2\right)\left(1+x+1+y\right)\)
\(\Leftrightarrow4\left(1+a\right)\le2.\left(x+y+2\right)\)
\(\Leftrightarrow x+y+2\ge2a+2\)
\(\Rightarrow x+y\ge2a\left(ĐPCM\right)\)
BĐT C-S:
\(\left(2\sqrt{a+1}\right)^2=\left(\sqrt{x+1}+\sqrt{y+1}\right)^2\)
\(\le\left(1+1\right)\left(x+1+y+1\right)=2\left(x+y+2\right)\)
Hay \(4\left(a+1\right)\le2\left(x+y+2\right)\)
\(\Leftrightarrow2a+2\le x+y+2\Leftrightarrow2a\le x+y\) *DDungs*
ĐKXĐ: x,y >1
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2=\sqrt{y^2+5}+\sqrt{y-1}+y^2\\ \)
\(\Leftrightarrow\sqrt{x^2+5}-\sqrt{y^2+5}+\left(\sqrt{x-1}-\sqrt{y-1}\right)+x^2-y^2=0\)
\(\Leftrightarrow\frac{\left(\sqrt{x^2+5}-\sqrt{y^2+5}\right).\left(\sqrt{x^2+5}+\sqrt{y^2+5}\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(\sqrt{x-1}-\sqrt{y-1}\right).\left(\sqrt{x-1}+\sqrt{y-1}\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{\left(x^2+5\right)-\left(y^2+5\right)}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{\left(x-1\right)-\left(y-1\right)}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\frac{x^2-y^2}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{x-y}{\sqrt{x-1}+\sqrt{y-1}}+\left(x^2-y^2\right)=0\)
\(\Leftrightarrow\left(x-y\right).\left(\frac{x+y}{\sqrt{x^2+5}+\sqrt{y^2+5}}+\frac{1}{\sqrt{x-1}+\sqrt{y-1}}+x+y\right)=0\)
\(\Rightarrow x-y=0\Leftrightarrow x=y\)
Giả sử x=y
Khi đó:
\(\sqrt{x^2+5}+\sqrt{x-1}+x^2\)
\(=\sqrt{y^2+5}+\sqrt{x-1}+y^2\)
Luôn đúng
Vậy ta suy ra đpcm
Áp dụng BĐT Bu nhi a cốp x ki
\(\left(1.\sqrt{x}+2.\sqrt{y}\right)^2\le\left(1^2+2^2\right)\left[\left(\sqrt{x}\right)^2+\left(\sqrt{y}\right)^2\right]=5\left(x+y\right)\)
=> \(\left(\sqrt{x}+2\sqrt{y}\right)^2\le5\left(x+y\right)\)
=> \(10^2\le5\left(x+y\right)\)
Tiếp nha
ĐKXĐ: ...
Đặt \(\sqrt{x-1}=a\ge0\)
\(\Rightarrow\left(a^2+3\right)a=y^3+3y\)
\(\Leftrightarrow a^3-y^3+3\left(a-y\right)=0\)
\(\Leftrightarrow\left(a-y\right)\left(a^2+y^2+ay\right)+3\left(a-y\right)=0\)
\(\Leftrightarrow\left(a-y\right)\left(a^2+y^2+ay+3\right)=0\)
\(\Leftrightarrow a=y\)
\(\Leftrightarrow\sqrt{x-1}=y\)
\(\Rightarrow x-1=y^2\)
\(\left(2\sqrt{1+a}\right)^2=4\left(1+a\right)=\left(\sqrt{1+x}+\sqrt{1+y}\right)^2\le2\left(x+y+2\right)\)
\(\Leftrightarrow\)\(x+y\ge2a\)
Áp dụng bđt Bunyakovsky: \(\left(\sqrt{1+x}+\sqrt{1+y}\right)^2\le2\left(x+y+2\right)\)
\(\Rightarrow4\left(a+1\right)\le2\left(x+y+2\right)\Leftrightarrow4a\le2\left(x+y\right)\Leftrightarrow x+y\ge2a\)