K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

10 tháng 12 2016

\(P=x^2+3x+y^2+3y+\frac{9}{x^2+y^2+1}\)

\(=x^2+y^2+1+\frac{9}{x^2+y^2+1}+3x+3y-1\)

\(\ge2.3.\frac{\sqrt{x^2+y^2+1}}{\sqrt{x^2+y^2+1}}+2.3.\sqrt{xy}-1\)

\(=6+6-1=11\)

Dấu = xảy ra khi x = y = 1

5 tháng 7 2020

Ta có: \(A=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(\frac{1}{2xy}+8xy\right)-4xy\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+2\sqrt{\frac{1}{2xy}.8xy}-\left(x+y\right)^2=4+4-1=7\)

Dấu "=" xảy ra khi và chỉ khi x = y = 0,5.

5 tháng 7 2019

Như này nha bạn 

Akakakakaka,am,am

 ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi ha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihiha ha ha ha hihihihihihihihihihi

5 tháng 7 2019

\(A=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{5}{4xy}\)

                                                      \(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{5}{\left(x+y\right)^2}\)

                                                        \(\ge4+2+5=11\)

"=" tại x = y = 1/2

1 tháng 6 2017

TXD : \(\hept{\begin{cases}y\left(x+y\right)\ne0\\\left(x+y\right)x\ne0\\\left(x-y\right)\left(x+y\right)\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne y\\x\ne-y\\xy\ne0\end{cases}}}\)

Câu b :

\(A=\frac{xy-\left(x+y\right)y}{xy\left(x+y\right)}:\frac{y^2+x\left(x-y\right)}{x\left(x^2-y^2\right)}:\frac{x}{y}\)

\(=\frac{x^2-xy+y^2}{xy\left(x+y\right)}.\frac{x\left(x-y\right)\left(x+y\right)}{x^2-xy+y^2}.\frac{y}{x}\)\(=1-\frac{y}{x}\)

Để \(A>1\)mà \(y< 0\)nên \(x\)và \(y\)phải cùng dấu \(\Rightarrow x< 0\)

9 tháng 8 2017

2) Ta có:

\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\)

Áp dụng BĐT Schwarz:

\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\)

Mà x+y=1 nên suy ra:

\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge4\)

\(\Rightarrow2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\ge8\)

=>đpcm.

Dấu ''='' xảy ra khi x=y=1/2

14 tháng 8 2020

\(P=\frac{\sqrt{1+x^2+y^2}}{xy}+\frac{\sqrt{1+y^2+z^2}}{yz}+\frac{\sqrt{1+z^2+x^2}}{zx}\)

\(\ge\text{Σ}\frac{\sqrt{\frac{\left(1+x+y\right)^2}{3}}}{xy}\text{=}\frac{1+x+y}{xy\sqrt{3}}\)

\(=\frac{\sqrt{3}}{3}\left(\frac{1+x+y}{xy}+\frac{1+y+z}{yz}+\frac{1+z+x}{zx}\right)\)

\(=\frac{\sqrt{3}}{3}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)

\(=\frac{\sqrt{3}}{3}\left(x+y+z+2xy+2yz+2zx\right)\)\(\ge\frac{\sqrt{3}}{3}\left(3\sqrt[3]{xyz}+2\cdot3\sqrt[3]{x^2y^2z^2}\right)=\frac{\sqrt{3}}{3}\left(3+6\right)=3\sqrt{3}\)

Dấu = xảy ra khi \(x=y=z=1\)