Tìm giá trị nhỏ nhất của A=|x-2/3|+3/4
Giúp mik vs mik đang gấp lắm!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{n-3}{n+2}=1-\dfrac{5}{n+2}\)
TH1 : n >=-1 => n+2>=1 >0
\(\Rightarrow A\ge1-\dfrac{5}{1}=-4\)
Dấu = khi n=-1
TH2: n<= -3 => n+2<=-1 <0
\(\Rightarrow A\le1-\dfrac{5}{-1}=6\)
Dấu = xảy ra khi n=-3
Cảm ơn vì bn đã giúp. Nhưng bn có thể giải chi tiết cho mik đc ko ạ?
\(a,-\left|2x-3\right|\le0,\forall x\Leftrightarrow-\left|2x-3\right|+3\le3\)
Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)
\(b,-\left|2-3x\right|\le0,\forall x\Leftrightarrow-\left|2-3x\right|-5\le-5\)
Dấu \("="\Leftrightarrow x=\dfrac{2}{3}\)
a: \(A=-\left|2x-3\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{3}{2}\)
b: \(B=-\left|2-3x\right|-5\le-5\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{3}\)
Theo đề ta có : x + 1 chia hết cho 2, 4, 5 và x là số nhỏ nhất hay x + 1 thuộc BCNN(2, 4, 5)
Ta có: 2 = 2 ; 4 = 22 ; 5 = 5
=> BCNN(2, 4, 5) = 22 . 5 = 20
=> x + 1 = 20 => x = 20 - 1= 19
Vậy x = 19
x chia 2 dư 1; x chia 4 dư 3; x chia 5 dư 4
\(\Rightarrow x+1\in BC\left(2,4,5\right)=B\left(20\right)=\left\{20;40;...\right\}\)
Mà \(x\) nhỏ nhất nên \(x-1\) nhỏ nhất
\(\Rightarrow x+1=20\Rightarrow x=19\)
a = |2x-1/3|-7/4
Do |2x-1/3| \(\ge\) 0
|2x-1/3|-7/4 \(\ge\) 7/4
Dấu = xảy ra <=> 2x-1/3=0. =>. x= 1/6
b 1/3|x-2|+2|3-1/2 y|+4
Do |x-2| \(\ge\) 0
|3-1/2y| \(\ge\) 0
=> 1/3|x-2|+2|3-1/2 y|+4 \(\ge\) 4
Dấu = xảy ra <=>\(\left\{{}\begin{matrix}x-2=0\\3-\dfrac{1}{2}y=0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=2\\y=6\end{matrix}\right.\)
a: Ta có: \(\left|2x-\dfrac{1}{3}\right|\ge0\forall x\)
\(\Leftrightarrow\left|2x-\dfrac{1}{3}\right|-\dfrac{7}{4}\ge-\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{6}\)
b: Ta có: \(\dfrac{1}{3}\left|x-2\right|\ge0\forall x\)
\(2\left|3-\dfrac{1}{2}y\right|\ge0\forall y\)
Do đó: \(\dfrac{1}{3}\left|x-2\right|+2\left|3-\dfrac{1}{2}y\right|\ge0\forall x,y\)
\(\Leftrightarrow\left|x-2\right|\cdot\dfrac{1}{3}+\left|3-\dfrac{1}{2}y\right|\cdot2+4\ge4\forall x,y\)
Dấu '=' xảy ra khi x=2 và y=6
\(H=\left(3x-6\right)^2-3\left|2x-4\right|+2023\)
\(=\left(3x-6\right)^2-2\left|3x-6\right|+2023\)
\(=\left(3x-6\right)^2-2\left|3x-6\right|+1+2022\)
\(=\left(\left|3x-6\right|-1\right)^2+2022\)
Do \(\left(\left|3x-6\right|-1\right)^2\ge0;\forall x\)
\(\Rightarrow H\ge2022\)
\(\Rightarrow H_{min}=2022\) khi \(\left|3x-6\right|-1=0\Rightarrow x=\left\{\dfrac{7}{3};\dfrac{5}{3}\right\}\)
\(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)
Ta có: \(\hept{\begin{cases}\left|x-1\right|\ge0\forall x\\\left|y+2\right|\ge0\forall x\\\left|z-3\right|\ge0\forall x\end{cases}\Rightarrow\left|x-1\right|+\left|y+2\right|+\left|z-3\right|\ge0\forall x;y;z}\)
Mà \(\left|x-1\right|+\left|y+2\right|+\left|z-3\right|=0\)
\(\hept{\begin{cases}\left|x-1\right|=0\\\left|y+2\right|=0\\\left|z-3\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=-2\\z=3\end{cases}}\)
Vậy \(x=1;y=-2;z=3\)
Bài 2:
a: Để \(\dfrac{4}{x+2}>0\) thì x+2>0
hay x>-2
b: Để \(\dfrac{3x+2}{-4}>0\) thì 3x+2<0
hay x<-2/3
Áp dụng KT \(\left|x\right|\ge0\)\(\forall\)\(x\)
BG :
Ta có : \(\left|x-\frac{2}{3}\right|\ge0\)\(\forall\)\(x\)
nên : \(\left|x-\frac{2}{3}\right|+\frac{3}{4}\ge0+\frac{3}{4}\)\(\forall\)\(x\)
hay \(A\ge\frac{3}{4}\)\(\forall\)\(x\)
Dấu " = " xảy ra :
\(\Leftrightarrow\)\(\left|x-\frac{2}{3}\right|=0\)
\(\Leftrightarrow\)\(x-\frac{2}{3}=0\)
\(\Leftrightarrow\)\(x=\frac{2}{3}\)
Vậy GTNN của \(A=\frac{3}{4}\)đạt được khi \(x=\frac{2}{3}\)