Chứng tỏ: 20+21+22+...+22019=22020-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



a) P = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13
Vậy P ⋮ 13
b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰
= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)
= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)
= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21
= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21
Vậy B ⋮ 21
c) A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
d) A = 1 + 4 + 4² + ... + 4⁹⁸
= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)
= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)
= 21 + 4³.21 + ... + 4⁹⁷.21
= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21
Vậy A ⋮ 21
e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1
= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)
= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105
= 11⁵.16105 + 16105
= 16105.(11⁵ + 1)
= 5.3221.(11⁵ + 1) ⋮ 5
Vậy A ⋮ 5

=> 2A =2 + 22 + 23 + ... + 22020
=> 2A-A =( 2 + 22 + 23 + ... + 22020)- (1 + 2 + 22 + 23 + ... + 22019)
=> A =22020-1
=> A+1 =22020
Vậy A + 1 là một số chính phương

\(A=2+2^2+2^3+...+2^{2020}+2^{2021}+2^{2022}\\=(2+2^2)+(2^3+2^4)+(2^5+2^6)+...+(2^{2021}+2^{2022})\\=2\cdot(1+2)+2^3\cdot(1+2)+2^5\cdot(1+2)+...+2^{2021}\cdot(1+2)\\=2\cdot3+2^3\cdot3+2^5\cdot3+...+2^{2021}\cdot3\\=3\cdot(2+2^3+2^5+..+2^{2021})\)
Vì \(3\cdot\left(2+2^3+2^5+...+2^{2021}\right)⋮3\)
nên \(A⋮3\).
\(Toru\)
A=(2+22)+22(2+22)+...+22020(2+22)
A= 6.1+22.6+...+22020.6
A=6(1+22+...+22020) chia hết cho 3
vậy A chia hết cho 3

Câu 1:
$A=(2+2^2)+(2^3+2^4)+(2^5+2^6)+....+(2^{2019}+2^{2020})$
$=2(1+2)+2^3(1+2)+2^5(1+2)+....+2^{2019}(1+2)$
$=(1+2)(2+2^3+2^5+...+2^{2019})=3(2+2^3+2^5+...+2^{2019})\vdots 3$
-----------------
$A=2+(2^2+2^3+2^4)+(2^5+2^6+2^7)+....+(2^{2018}+2^{2019}+2^{2020})$
$=2+2^2(1+2+2^2)+2^5(1+2+2^2)+....+2^{2018}(1+2+2^2)$
$=2+(1+2+2^2)(2^2+2^5+....+2^{2018})$
$=2+7(2^2+2^5+...+2^{2018})$
$\Rightarrow A$ chia $7$ dư $2$.
Câu 2:
$B=(3+3^2)+(3^3+3^4)+....+(3^{2021}+3^{2022})$
$=3(1+3)+3^3(1+3)+...+3^{2021}(1+3)$
$=(1+3)(3+3^3+...+3^{2021})=4(3+3^3+....+3^{2021})\vdots 4$
-------------------
$B=(3+3^2+3^3)+(3^4+3^5+3^6)+...+(3^{2020}+3^{2021}+3^{2022})$
$=3(1+3+3^2)+3^4(1+3+3^2)+....+3^{2020}(1+3+3^2)$
$=(1+3+3^2)(3+3^4+...+3^{2020})=13(3+3^4+...+3^{2020})\vdots 13$ (đpcm)

ta có \(\frac{1}{20}>\frac{1}{27};\frac{1}{21}>\frac{1}{27}...;\frac{1}{26}>\frac{1}{27}\)
=> \(\frac{1}{20}+\frac{1}{21}+...+\frac{1}{27}>\frac{7}{27}+\frac{1}{27}=\frac{8}{27}\)(ĐPcm)
Ta có : \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}\)(8 số hạng)
\(>\frac{1}{27}+\frac{1}{27}+\frac{1}{27}+...+\frac{1}{27}\)(8 số hạng)
\(=\frac{1}{27}\times8\)
\(=\frac{8}{27}\)
\(\Rightarrow\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+...+\frac{1}{27}>\frac{8}{27}\left(đpcm\right)\)

Đặt \(B=\frac{1}{20}+\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}< C=\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+....+\frac{1}{200}\)
Số các phân số \(\frac{1}{200}\)có trong \(B\)là :
( 200 - 21 ) :1 + 1 = 180 ( phân số )
Nên \(B=\frac{1}{20}+180.\frac{1}{200}=\frac{1}{20}+\frac{9}{10}>\frac{9}{10}\)
Do đó , \(C>B>\frac{9}{10}\)nên \(C>\frac{9}{10}\)
Vậy \(C>\frac{9}{10}\left(ĐPCM\right)\)

\(S=2^0+2^1+2^2+...+2^7\)
\(\Rightarrow S=\left(2^0+2^1\right)+2^2\left(2^0+2^1\right)+...+2^6\left(2^0+2^1\right)\)
\(\Rightarrow S=3+2^2.3+...+2^6.3\)
\(\Rightarrow S=3\left(1+2^2+...+2^6\right)⋮3\)
\(\Rightarrow dpcm\)
Gọi A = 20 + 21 + 22 + .. + 22019
2A = 21 + 22 + 23 + ... + 22020
Lấy 2A trừ A theo vế ta có :
2A - A = (21 + 22 + 23 + ... + 22020) - (20 + 21 + 22 + .. + 22019)
A = 22020 - 1 = 22020 - 1
=> 20 + 21 + 22 + .. + 22019 = 2020 - 1 (ĐPCM)
Gọi dãy số là A
\(A=2^0+2^1+2^2+...+2^{2019}\)
\(2A=2^1+2^2+2^3+...+2^{2020}\)
\(2A-A=A=2^1+2^2+2^3...+2^{2020}-2^0-2^1-2^2-...-2^{2019}\)
\(A=2^{2020}-2^0=2^{2020}-1\)