K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2015

ĐẶT \(A=16^n-15^n-1\)

Với n=0 => A=0 và A chia hết cho 75

Với n là k(k thuộc Q)=>\(A=16^k-15^k-1\)chia hếy cho 75

CM A(k+1) chia hết cho 75

Thật vậy A(k+1)=\(16^{k+1}-15^{k+1}-1=16^k.16-15^k.15-1\)

Từ đây bạn CM A(k+1) chia hết cho 75 nưa là đc với giả thiết là 16^k-15^k-1 chia hết cho 75

 

27 tháng 11 2015

n =2 thì điều trên không đúng

3 tháng 12 2016

Câu hỏi này là câu hỏi nâng cao nên rất khó

=>Nên hỏi dạy bộ môn Toán

16 tháng 12 2016

Với n chẵn vẫn đúng mà                                                                                                                                                                                                                                                                                                                           

13 tháng 9 2019

Ta phân tích biểu thức đã cho ra nhân tử :

\(A=n^4-4n^3-4n^2+16n\)

\(=\left[n^4-4n^3\right]-\left[4n^2-16n\right]=n^3(n-4)-4n(n-4)\)

\(=n(n-4)\left[n^2-4\right]=n(n-2)(n+2)(n-4)\)

Vì n chẵn và lớn hơn 4 nên ta đặt n = 2k + 2 , trong đó k > 1 và biểu diễn theo k,ta có : \(A=(2k+2)(2k)(2k+4)(2k-2)\)

\(=16k(k-1)(k+1)(k+2)=16(k-1)(k)(k+1)(k+2)\)

Ta nhận thấy \((k-1)(k)(k+1)(k+2)\)là tích của bốn số nguyên dương liên tiếp,tích này chia hết cho 2.3.4 = 24

Vậy tích A đã cho chia hết cho 16.2.3.4 = 384 => đpcm

30 tháng 11 2016

Mình làm gọn 1 xíu nhé

Ta có

\(x^4-4x^3-4x^2+16x=\left(x-4\right)\left(x-2\right)x\left(x+2\right)\)

Đây là tích của 4 số chẵn liên tiếp nên sẽ có 2 số chia hết cho 2, 1số chia hết cho 4, 1 số chia hết cho 8. Nên tích này chia hết cho 27.

Trong 3 số chẵn liên tiếp sẽ có 1 số chia hết cho 3

Vì 3 và 27 là nguyên tố cùng nhau nên

Tích chia hết cho 3.27 = 384

26 tháng 11 2023

a: Với n=3 thì \(n^3+4n+3=3^3+4\cdot3+3=42⋮̸8\) nha bạn

b: Đặt \(A=n^3+3n^2-n-3\)

\(=\left(n^3+3n^2\right)-\left(n+3\right)\)

\(=n^2\left(n+3\right)-\left(n+3\right)\)

\(=\left(n+3\right)\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n+3\right)\)

n lẻ nên n=2k+1

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1+3\right)\)

\(=2k\cdot\left(2k+2\right)\left(2k+4\right)\)

\(=8k\left(k+1\right)\left(k+2\right)\)

Vì k;k+1;k+2 là ba số nguyên liên tiếp

nên \(k\left(k+1\right)\left(k+2\right)⋮3!=6\)

=>\(A=8k\left(k+1\right)\left(k+2\right)⋮6\cdot8=48\)

c: 

loading...

loading...

d: Đặt \(B=n^4-4n^3-4n^2+16n\)

\(=\left(n^4-4n^3\right)-\left(4n^2-16n\right)\)

\(=n^3\left(n-4\right)-4n\left(n-4\right)\)

\(=\left(n-4\right)\left(n^3-4n\right)\)

\(=n\left(n-4\right)\left(n^2-4\right)\)

\(=\left(n-4\right)\cdot\left(n-2\right)\cdot n\cdot\left(n+2\right)\)

n chẵn và n>=4 nên n=2k

B=n(n-4)(n-2)(n+2)

\(=2k\left(2k-2\right)\left(2k+2\right)\left(2k-4\right)\)

\(=2k\cdot2\left(k-1\right)\cdot2\left(k+1\right)\cdot2\left(k-2\right)\)

\(=16k\left(k-1\right)\left(k+1\right)\left(k-2\right)\)

Vì k-2;k-1;k;k+1 là bốn số nguyên liên tiếp

nên \(\left(k-2\right)\cdot\left(k-1\right)\cdot k\cdot\left(k+1\right)⋮4!=24\)

=>B chia hết cho \(16\cdot24=384\)

9 tháng 10 2019

Câu hỏi của Nghĩa Nguyễn - Toán lớp 9 - Học toán với OnlineMath