Cho :
A=1/12+1/22+1/32+1/42+...+1/502
Chứng minh A < 2
mik đang cần gấp,các bạn giúp mik nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1/2^2+1/3^2+...+1/10^2
=>A<1-1/2+1/2-1/3+...+1/9-1/10=1-1/10<1
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
\(3.M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}\)
=> \(3M-M=2M=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{38}}-\frac{1}{3}-\frac{1}{3^2}-...-\frac{1}{3^{39}}\)
=> \(2M=1-\frac{1}{3^{39}}\)
=> \(M=\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)\)
do \(1-\frac{1}{3^{39}}< 1\)
=> \(\frac{1}{2}\left(1-\frac{1}{3^{39}}\right)< \frac{1}{2}.1=\frac{1}{2}\)
Vay \(M< \frac{1}{2}\)
Chuc bn hoc tot !
\(A = (\frac{1}{10} + ...+ \frac{1}{19} ) + (\frac{1}{20} + ...+ \frac{1}{29}) + (\frac{1}{30} +...+ \frac{1}{39} ) + (\frac{1}{40} + ...+\frac{1}{49} ) + (\frac{1}{50} +....+ \frac{1}{59}) + (\frac{1}{60} + ....+\frac{1}{69}) + \frac{1}{70}\)
Ta có : mỗi bên có 10 số hạng
\( (\frac{1}{10} + ..+ \frac{1}{19}) < (\frac{1}{10} + ...+ \frac{1}{10}) = \frac{1}{1}\)
\(\frac{1}{20}+..+ \frac{1}{29} < (\frac{1}{20}+..+\frac{1}{20}) = \frac{1}{2}\)
\((\frac{1}{30} +...+ \frac{1}{39} )< (\frac{1}{30} +...+ \frac{1}{30}) = \frac{1}{3}\)
\((\frac{1}{40} + ...+\frac{1}{49} )< (\frac{1}{40} + ...+\frac{1}{40}) = \frac{1}{4}\)
\((\frac{1}{50} +....+ \frac{1}{59})< (\frac{1}{50} +....+ \frac{1}{50}) = \frac{1}{5}\)
\((\frac{1}{60} + ....+\frac{1}{69}) + \frac{1}{70}< (\frac{1}{60} + ....+\frac{1}{60})+ \frac{1}{70} = \frac{1}{6} +\frac{1}{70}\)
\(\implies A < 1+\frac{1}{2} + ...+ \frac{1}{6} + \frac{1}{70}= \frac{13}{15} + \frac{1}{70} <1<\frac {51}{20} \)
\(\implies A<\frac{51}{20}\) \((đpcm)\)
Loại bài toán này là bài toán về tích của dãy số. Đầu tiên, ta nhận thấy rằng dãy số cho trước có quy luật như sau: mỗi phân số trong dãy có tử số là một số lẻ và mẫu số là một số chẵn. Cụ thể hơn, tử số của phân số thứ n là 3n - 2 và mẫu số của phân số thứ n là 3n. Vậy, ta có thể viết lại A như sau: A = \prod_{n=1}^{82} \frac{3n-2}{3n} Bây giờ, để chứng minh A < 1/27, ta sẽ so sánh từng phần tử trong dãy với 1/3. Nếu tất cả các phần tử đều nhỏ hơn hoặc bằng 1/3, thì tích của chúng cũng sẽ nhỏ hơn hoặc bằng (1/3)^82 = 1/(3^82). Ta có: \frac{3n-2}{3n} = 1 - \frac{2}{3n} <= 1 - \frac{2}{3*1} = \frac{1}{3} Vậy, tất cả các phần tử trong dãy đều nhỏ hơn hoặc bằng 1/3. Do đó: A <= (1/3)^82 < (1/27) Vậy, ta đã chứng minh được rằng A < 1/27.
#)Giải : (Đg rảnh nên làm lun :v)
Ta có : \(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{50}-\frac{1}{51}=1-\frac{1}{51}=\frac{50}{51}< 2\)
\(\Rightarrow A< \frac{50}{51}< 2\)
\(\Rightarrow A< 2\left(đpcm\right)\)