So sánh
(1/16)10 và (1/2)50
(0,1)10 và (0,3)20
2300 và 3200
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1,1020và 9010
ta có:+,1020=(102)10=10010
+,9010=9010
vì 10010>9010=>1020>9010
2,(1/16)10 và (1/2)50
ta có:+, (1/16)10=(1/16)10
+,(1/2)50=(1/25)10=(1/32)10
vì (1/16)10>(1/32)10=>(1/16)10>(1/2)50
k mik nhé
\(a,\) \(10^{20}=10^{10+10}=10^{10}.10^{10}\)
\(90^{10}=9^{10}.10^{10}\)
Vì \(10^{10}.10^{10}>9^{10}.10^{10}\)
\(\Rightarrow10^{20}>90^{10}\)
Vậy \(10^{20}>90^{10}\)
\(b,\)\(\left(\frac{1}{16}\right)^{10}=\frac{1^{10}}{16^{10}}=\frac{1}{\left(4^2\right)^{10}}=\frac{1}{4^{20}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1^{50}}{2^{50}}=\frac{1}{\left(2^2\right)^{25}}=\frac{1}{4^{25}}\)
Vì \(\frac{1}{4^{20}}>\frac{1}{4^{25}}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
~~~~~~~~~~Hok tốt~~~~~~~~~~~
a/
(0.3)20 = [(0.3)2]10 = (0.09)10
b/
(\(\frac{1}{6}\))10 = [(\(\frac{1}{2}\))4]10 = (\(\frac{1}{2}\))40
c/
2400 = (22)200 = 4200
a, Ta có: 5^30 = (5^3)^10= 125^ 10 > (-10^2)^10= 100^10
b, ta có: 21^12= ( 21^3)^4 > 54^4
c, Ta có: (1/16)^10 = 1/16^10
(1/2)^50= 1/2^50
Lại có: 16^10=(2^4)^10= 2^40 < 2^50 nên (1/6)^10> (1/2)^50
\(\left(\frac{1}{16}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)
vì 40<50 nên \(\left(\frac{1}{2}\right)^{40}<\left(\frac{1}{2}\right)^{50}\)
hay \(\left(\frac{1}{16}\right)^{10}<\left(\frac{1}{2}\right)^{50}\)
\(\left(\dfrac{7}{2}\right)^{50}=\left(\dfrac{16807}{32}\right)^{10}\)
mà 16807/32>1/16
nên \(\left(\dfrac{1}{16}\right)^{10}< \left(\dfrac{7}{2}\right)^{50}\)
a)0,310=(0,32)10=0,910
0,9>0,1=>0,910>0,110hay0,320>0,110
b)430+320=(43)10+(32)10=(43+32)10=7310
3.24=72
có 73>72 => 7310>7210 hay 430+320>3.2410 (câu này mình ko chắc đúng đâu)
a) 1020 = 10010 => 1020 > 9010
b) 0,320 = 0,910 => 0,110 < 0,910
Ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1}{2^{50}}\)
Vì \(2^{40}< 2^{50}\Rightarrow\frac{1}{2^{40}}>\frac{1}{2^{50}}\)hay \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(0,3\right)^{20}=\left[\left(0,3\right)^2\right]^{10}=\left(0,09\right)^{10}\)
Vì \(0,09< 0,1\Rightarrow\left(0,09\right)^{10}< \left(0,1\right)^{100}\)
hay \(\left(0,3\right)^{20}< \left(0,1\right)^{10}\)