x^2-2x+1-y^2 phân tích nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\dfrac{1}{x-y}-\dfrac{1}{x+y}+\dfrac{2x}{\left(x-y\right)\left(x+y\right)}\\ \dfrac{x+y}{\left(x-y\right)\left(x+y\right)}-\dfrac{x-y}{\left(x-y\right)\left(x+y\right)}+\dfrac{2x}{\left(x-y\right)\left(x+y\right)}\\ \dfrac{x+y-x+y+2x}{\left(x-y\right)\left(x+y\right)}\\ \dfrac{2x+2y}{\left(x-y\right)\left(x+y\right)}\\ \dfrac{2}{x-y}\)
\(\dfrac{1}{x-y}+\dfrac{1}{x+y}+\dfrac{2x}{x^2-y^2}=\dfrac{x+y}{\left(x-y\right)\left(x+y\right)}+\dfrac{x-y}{\left(x-y\right)\left(x+y\right)}+\dfrac{2x}{\left(x-y\right)\left(x+y\right)}=\dfrac{4x}{\left(x-y\right)\left(x+y\right)}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(1,=x\left(x^2-2x+1-y^2\right)=x\left[\left(x-1\right)^2-y^2\right]=x\left(x-y-1\right)\left(x+y-1\right)\\ 2,=\left(x+y\right)^3\\ 3,=\left(2y-z\right)\left(4x+7y\right)\\ 4,=\left(x+2\right)^2\\ 5,Sửa:x\left(x-2\right)-x+2=0\\ \Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
11) \(3x\left(x-1\right)+5\left(1-x\right)=\left(3x-5\right)\left(x-1\right)\)
12) \(2\left(2x-1\right)+3\left(1-2x\right)=1-2x\)
13) \(10x\left(x-y\right)-8y\left(y-x\right)=2\left(x-y\right)\left(5x+4y\right)\)
14) \(3x\left(y+2\right)-3\left(y+2\right)=3\left(x-1\right)\left(y+2\right)\)
15) \(x^2-y^2-2x+2y\)
\(=\left(x-y\right)\left(x+y\right)-2\left(x-y\right)=\left(x-y\right)\left(x+y-2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(4x^2-4xy+y^2\)
\(=\left(2x\right)^2-2\cdot2x\cdot y+y^2\)
\(=\left(2x-y\right)^2\)
\(---\)
\(\left(x+1\right)^2-9y^2\)
\(=\left(x+1\right)^2-\left(3y\right)^2\)
\(=\left(x+1-3y\right)\left(x+1+3y\right)\)
\(=\left(x-3y+1\right)\left(x+3y+1\right)\)
\(---\)
\(2x+5^2-9x^2\) (kt lại đề bài)
\(2x-1^2-3x-1^2\)
\(=-x-2=-1\cdot\left(x+2\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(2\left(x-1\right)^3-\left(x-1\right)=\left(x-1\right)\left(2\left(x-1\right)^2-1\right)\)
2) \(y\left(x-2y\right)^2+xy^2\left(2y-x\right)=\left(2y-x\right)\left(2\left(2y-x\right)+1\right)=\left(2y-x\right)\left(4y-2x+1\right)\)
3) \(xy\left(x+y\right)-x-y=xy\left(x+y\right)-\left(x+y\right)=\left(x+y\right)\left(xy-1\right)\) (xem lại đề sửa -2x thành -x mới đúng)
4) \(xy\left(x-3y\right)-2x+6y=xy\left(x-3y\right)-2\left(x-3y\right)=\left(x-3y\right)\left(xy-2\right)\)
x^2-2x+1-y^2=(x^2-2x+1)-y^2
=(x-1)^2-y^2
=(x-1-y).(x-1+y)
`x^2 - 2x+1-y^2=(x-1)^2 -y^2=(x-1-y)(x-1+y)`