1/2*3+1/3*4+1/4*5+.....+1/100*101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 2:
\(\left|x+\frac{1}{101}\right|+\left|x+\frac{2}{101}\right|+...+\left|x+\frac{100}{101}\right|=101x\)
Có \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge0\)
do đó phương trình ban đầu tương đương với:
\(x+\frac{1}{101}+x+\frac{2}{101}+...+x+\frac{100}{101}=101x\)
\(\Leftrightarrow100x+\left(\frac{1}{101}+\frac{2}{101}+...+\frac{100}{101}\right)=101x\)
\(\Leftrightarrow x=\frac{100.101}{2.101}=50\)
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(=1-\frac{1}{101}=\frac{101}{101}-\frac{1}{101}\)
\(=\frac{100}{101}\)
1/1*2+1/2*3+1/3*4+......+1/99*100+1/100*101 Bài tương tự
= 1-1/2 + 1/2-1/3+...+1/99-100+1/00-1/101
= 1-1/101
=100/101
tk nha