Tìm stn a,b biết:
a, 2a+2 . 5b = 20a
b, 100a : 5b = 2b và 3b = 729
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: a>b
=>3a>3b
=>3a+5>3b+5
b: a>b
=>2a>2b
=>2a-3>2b-3>2b-4
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
câu 1
xét tích 3 số
=(3a^2.b.c^3).(-2a^3b^5c).(-3a^5.b^2.c^2)
=[3.(-2).(-3)].(a^2.a^3.a^5).(b.b^5.b^2).(c.c^3.c^2)
=18.a^10.b^8.c^5 bé hơn hoặc bằng 0
=>tích 3 số đó không thể cùng âm=>3 số đó ko cùng âm dc
bây giờ mk đi học rùi tí về mk làm típ nhá
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
a^2 - 2ab - 3b^2 = 0
<=> a^2 - 3ab + ab - 3b^2 = 0
<=> a(a - 3b) + b(a - 3b) = 0
<=> (a - 3b)(a + b) = 0
=> a - 3b = 0 hoặc a + b = 0
=> a = 3b hoặc a = -b
+ Nếu a = 3b
A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)
A = (7.3b+2b)/(2.3b+b) + (9.3b-5b)/(2.3b-b)
A = 23b/7b + 22b/5b
A = 23/7 + 22/5 = 269/35
+ Nếu a = -b
A = (7a+2b)/(2a+b) + (9a-5b)/(2a-b)
A = (-7b+2b)/(-2b+b) + (-9b-5b)/(-2b-b)
A = -5b/-b + (-14b/-3b)
A = 5 + 14/3 = 29/3
a^2-2ab-3b^2=0
=>a^2-3ab+ab-3b^2=0
=>a(a-3b)+b(a-3b)=0
=>(a+b)(a-3b)=0
mà a,b khác 0 => a+b khác 0
=>a-3b=0
=>a=3b
Thay vào A ta được:
A=(7a+2b)/(2a+b)+(9a-5b)/(2a-b)
=(7.3b+2b)/(2.3b+b)+(9.3b-5b)/(2.3b-b)
=23b/7b+22b/5b=23/7+22/5=......
ta có:a-2ab-3b2=0
=>a2-3ab+ab-3b2=0
=>a(a-3b)+b(a-3b)=0
=>(a+b)(a-3b)=0
vìa,b khác 0=>a-3b=0
=>a=3b
thay vào A ta được:
A=(7.3b+2b)/(2.3b+b)+9=(9.3b-5b)/(2.3b-b)
=23b/7b+22b/5b
=23/7+22/5
=269/35
Vậy A=269/35
a, Vì \(a^2-b^2=4c^2\Rightarrow16a^2-16b^2=64c^2\) (1)
Ta có:\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=\left(5a-3b\right)^2-\left(8c\right)^2\)
\(=25a^2-30ab+9b^2-64c^2\) (2)
Thay (1) vào (2) ta được
\(\left(5a-3b+8c\right)\left(5a-3b-8c\right)=25a^2-30ab+9b^2-16a^2+16b^2\)
\(=9a^2-30ab+25b^2=\left(3a-5b\right)^2\)
=> đpcm
b, \(M=\left(2a+2b-c\right)^2+\left(2b+2c-a\right)^2+\left(2c+2b-b\right)^2\)
\(=4a^2+4b^2+c^2+4b^2+4c^2+a^2+4c^2+4a^2+b^2\)
\(+8ab-4ac-4bc+8bc-4ab-4ac+8ac-4bc-4ab\)
\(=9.\left(a^2+b^2+c^2\right)=9.2017=18153\)
Vậy M=18153
(2a-3b)-(5b-d)+(8b-d)
\(=2a-3b-5b+d+8b-d\)
\(=2a+\left(8b-3b-5b\right)+\left(d-d\right)\)
=2a
\(\left(a+b\right)-\left(d-4b\right)-\left(c-10d\right)\)
\(=a+b-d+4b-c+10d\)
\(=a+5b+11d-c\)
ai nhanh nhất thì k nha
a)\(2^{a+2}.5^b=20^a=>2^{a+2}.5^b=2^{2a}.5^a=>5^b:5^a=2^{2a}:2^{a+2}=>5^{b-a}=2^{2a-a-2}\)
\(=>5^{b-a}=2^{a-2}\)Mà \(\left(2;5\right)=1\)nên \(b-a=a-2=0=>a=b=2\)
Vậy a=b=2
b) Ta có : \(100^a:5^b=2^b=>2^{2a}.5^{2a}:5^b=2^b=>5^{2a-b}=2^{b-2a}\)
Mà \(\left(2;5\right)=1\)nên \(2a-b=b-2a=0=>2a=b\)
Ta có\(3^b=729=3^6=>b=6\)
Suy ra a=3
Vậy a=3 , b=6