<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Casio ư? Khá dễ!
Ta có: A = \(3+3^2+3^3+.....+3^{20}\)
=> 3A = \(3^2+3^3+3^4+.....+3^{21}\)
=> 3A - A = \(\left(3^2+3^3+3^4+....+3^{21}\right)-\left(3+3^2+....+3^{20}\right)\)
=> 2A = \(3^{21}-3\)
=> A = \(\dfrac{3^{21}-3}{2}=5230176600=2^3.3.5^2.11^2.61.1181\)
=> Tổng các ước số lẻ của A là:
\(\left(3+1\right)\left(5^2+5+1\right)\left(11^2+11+1\right)\left(61+1\right)\left(1181+1\right)\)
= 1208599728
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\right)\)
\(2A=1-\frac{1}{3^{99}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{99}}}{2}< \frac{1}{2}\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vậy mk làm nha:
Ta có:
A=\(3+3^2+3^3+...+3^{2016}=3+\left(3^2+3^3+...+3^{2016}\right)\)
\(=3+3^2.\left(1+3+...+3^{2014}\right)=3+9.\left(1+3+...+3^{2014}\right)\)
Do 3 \(⋮̸\)9; \(9.\left(1+3+...+3^{2014}\right)⋮9\) \(\Rightarrow A⋮̸\)9 (1)
Mà \(3⋮3;3^2⋮3;...;3^{2016}⋮3\Rightarrow A⋮3\) (2)
Từ (1) và (2) \(\Rightarrow\)A ko là số chính phương (vì một số chính phương chia hết cho 1 số sẽ chia hết cho bình phương của số đó)
Vậy...
Trần Minh Hưng, hình như kia là \(3^{2016}\) thôi đúng ko, bạn thừa nhân 3 ak
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)