K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 5 2015

  Đặt A \(=\) \(\frac{1}{3}+\frac{2}{3^2}+...+\frac{100}{3^{100}}\)

 => 3A\(=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

=> 3A- A \(=\) 2A \(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt B \(=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)=>\(3B=3+1+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)

 => 2B \(=3-\frac{1}{3^{99}}<3\)  =>B < \(\frac{3}{2}\) => 2A< \(\frac{3}{2}\) => A < \(\frac{3}{4}\)

ĐÚNG CÁI NHÉ BẠN

 

11 tháng 5 2015

bài này mình học rồi, chuẩn men 

 

28 tháng 8 2022

Vì tui dùng app giải

22 tháng 8 2017

 ta có 
1/2^2 < 1/(1.2)= 1-1/2 
1/3^2 <1/(2.3)=1/2-1/3 
1/4^2 <1/(3.4)=1/3-1/4 
...... 
1/100^2 < 1/99-1/100 
cộng vế với vế ta được 1/2^2 +1/3^2+...< 1-1/2+1/2-1/3+....+1/99-1/100=1-1/100 
=> 100/100-1/100

=>99/100

tk nha bn

22 tháng 8 2017

99/100<1 bn nha

3 tháng 5 2019

a, Gọi d là ƯC(12n + 1; 30n + 2 ), ta có :

12n + 1 chia hết cho d => 5( 12n + 1 ) chia hết cho d

30n + 2 chia hết cho d => 2 ( 30n + 2 ) chia hết cho d

-> 5( 12n + 1 ) - 2( 30n + 2 ) chia hết cho d

=> 1 chia hết cho d

vậy d = 1 nên 12n + 1 và 30n + 2 nguyên tố cùng nhau

=> \(\frac{12n+1}{30n+2}\)là phân số tối giản

3 tháng 5 2019

b, ta có : \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4^2}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.....

\(\frac{1}{100^2}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

Vậy \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1-\frac{1}{100}=\frac{99}{100}< 1\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 1\)

29 tháng 5 2017

Ta có :

\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)\)

\(=100-\left[1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+...+\left(1-\frac{99}{100}\right)\right]\)

\(=100-\left[\left(1+1+1+...+1\right)-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-\left[100-\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\right]\)

\(=100-100+\left(\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\right)\)

\(=\frac{1}{2}+\frac{2}{3}+...+\frac{99}{100}\)

29 tháng 5 2017

ta có 100-(1+1/2+1/3+.....+1/100)

=(1+1+1......1)(99 số 1)-(1+1/2+1/3+......+1/100)

=(1-1)+(1-1/2)+(1-1/3)+.......+(1-1/100)

=1/2+2/3+3/4+.....+99/100

8 tháng 6 2017

\(A< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}< 1\Rightarrow A< 1\)

Vậy A<1

8 tháng 6 2017

ta có : 

\(\frac{1}{2!}=\frac{1}{1.2}\)

\(\frac{1}{3!}=\frac{1}{1.2.3}=\frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{4!}=\frac{1}{1.2.3.4}< \frac{1}{3.4}=\frac{1}{3}-\frac{1}{4}\)

\(\frac{1}{5!}=\frac{1}{1.2.3.4.5}< \frac{1}{4.5}=\frac{1}{4}-\frac{1}{5}\)

...................................................................................................

\(\frac{1}{99!}=\frac{1}{1.2.3...98.99}< \frac{1}{98.98}=\frac{1}{98}-\frac{1}{99}\)

\(\frac{1}{100!}=\frac{1}{1.2.3....99.100}< \frac{1}{99.100}=\frac{1}{99}-\frac{1}{100}\)

cộng vế với vế có

\(A=\frac{1}{2!}+\frac{1}{3!}+..+\frac{1}{100!}< \frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}< 1\)DPCM

26 tháng 5 2016

Gọi d là ƯC của 4n + 7 và 6n + 1

Khi đó : 4n + 7 chia hết cho d và 6n + 1 chia hết cho d

<=>   12n + 21 chia hết cho d và 12n + 2 chia hết cho d

=> (12n + 21) - ( 12n + 2) chia hết cho d = > 19 chia hết cho d

Vì 19 là số nguyên tố => d = 1

Vậy \(\frac{4n+7}{6n+1}\) Là p/s tối giản

26 tháng 5 2016

Nếu n = 3 thì 4n+7/6n+1=1 đâu phải là phân số tối giản