Tìm X biết:
6x2-(2x+5)(3x-2)=7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c: Ta có: \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\)
\(\Leftrightarrow3x^2+26x=0\)
\(\Leftrightarrow x\left(3x+26\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\)
\(a,\Leftrightarrow x^2+8x+16-x^3-12x^2=16\\ \Leftrightarrow x^3+11x^2-8x=0\\ \Leftrightarrow x\left(x^2+11x-8\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+11x-8=0\left(1\right)\end{matrix}\right.\\ \Delta\left(1\right)=121+32=153\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11-3\sqrt{17}}{2}\\x=\dfrac{-11+3\sqrt{17}}{2}\end{matrix}\right.\\ S=\left\{0;\dfrac{-11-3\sqrt{17}}{2};\dfrac{-11+3\sqrt{17}}{2}\right\}\)
\(c,\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1=28\\ \Leftrightarrow3x^2+26x=0\\ \Leftrightarrow x\left(3x+26\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{26}{3}\end{matrix}\right.\\ d,\Leftrightarrow x^3-6x^2+12x-8-x^3-125-6x^2=11\\ \Leftrightarrow-12x^2+12x-144=0\\ \Leftrightarrow x^2-x+12=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)
\(a,\Leftrightarrow6x^2-6x^2-11x+10=-12\\ \Leftrightarrow-11x=-22\\ \Leftrightarrow x=2\\ b,\Leftrightarrow x^3+27-x^3-2x=12-5x\\ \Leftrightarrow3x=-15\\ \Leftrightarrow x=-5\\ c,\Leftrightarrow x^2-6x-16=0\\ \Leftrightarrow\left(x-8\right)\left(x+2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\)
a: ta có: \(6x^2-\left(2x+5\right)\left(3x-2\right)=-12\)
\(\Leftrightarrow6x^2-6x^2+4x-15x+10=-12\)
\(\Leftrightarrow-11x=-22\)
hay x=2
b: Ta có: \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x^2+2\right)=12-5x\)
\(\Leftrightarrow x^3+27-x^3-2x+5x=12\)
\(\Leftrightarrow x=-5\)
Bài 2:
a: Ta có: \(A=\left(x+1\right)^3+\left(x-1\right)^3\)
\(=x^3+3x^2+3x+1+x^3-3x^2+3x-1\)
\(=2x^3+6x\)
b: Ta có: \(B=\left(x-3\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+\left(3x-1\right)\left(3x+1\right)\)
\(=x^3-9x^2+27x-27-x^3-27+9x^2-1\)
\(=27x-55\)
a. 6x2 - (2x + 5)(3x - 2) = 7
<=> 6x2 - 6x2 + 4x - 15x + 10 = 7
<=> -11x = -3
<=> \(x=\dfrac{3}{11}\)
b. (5 - x)(25 + 5x + x2) + x(x2 - 7) = 25
<=> 125 - x3 + x3 - 7x = 25
<=> -7x = 25 - 125
<=> -7x = -100
<=> \(x=\dfrac{100}{7}\)
c. (7 - 2x)2 + (3 + 2x)(3 - 2x) = 30
<=> 49 - 28x + 4x2 + 9 - 4x2 = 30
<=> 4x2 - 4x2 - 28x = 30 - 49 - 9
<=> -28x = -28
<=> x = 1
15 \(\times\) ( 2\(x\) - 16) - (6\(x^2\) + 15\(x\)): 3\(x\) = 20
15 \(\times\) (2\(x\) - 16) - 3\(x\)( 2\(x\) + 5):3\(x\) = 20
30\(x\) - 240 - (2\(x\) + 5) = 20
30\(x\) - 240 - 2\(x\) - 5 = 20
28\(x\) - 245 = 20
28\(x\) = 20 + 245
28\(x\) = 265
\(x\) = 265:28
15(2x-16)-(6\(x^2\)+15x):3x=20
=>30x-240-2x-5=20
=>28x=265
=>x=\(\dfrac{265}{28}\)
\(6x^2-2x\left(3x+\dfrac{3}{2}\right)=9\)
\(\Rightarrow6x^2-6x^2-3x=9\)
\(\Rightarrow-3x=9\)
\(\Rightarrow x=\dfrac{9}{-3}\)
\(\Rightarrow x=-3\)
\(6x^2-2x\left(3x+\dfrac{3}{2}\right)=9\\ \Leftrightarrow6x^2-6x^2-3x=9\\ \Leftrightarrow3x=9\\ \Leftrightarrow x=3\)
2:
a: \(9x^2-1=\left(3x\right)^2-1=\left(3x-1\right)\left(3x+1\right)\)
b: \(2\left(x-1\right)+x^2-x\)
\(=2\left(x-1\right)+x\left(x-1\right)\)
\(=\left(x-1\right)\left(x+2\right)\)
c: \(3x^2+14x-5\)
\(=3x^2+15x-x-5\)
\(=3x\left(x+5\right)-\left(x+5\right)=\left(x+5\right)\left(3x-1\right)\)
3:
a: \(2x\left(x-1\right)-2x^2=4\)
=>\(2x^2-2x-2x^2=4\)
=>-2x=4
=>x=-2
b: \(x\left(x-3\right)-\left(x+2\right)\left(x-1\right)=5\)
=>\(x^2-3x-\left(x^2+x-2\right)=5\)
=>\(x^2-3x-x^2-x+2=5\)
=>-4x=3
=>x=-3/4
c: \(4x^2-25+\left(2x+5\right)^2=0\)
=>\(\left(2x-5\right)\left(2x+5\right)+\left(2x+5\right)^2=0\)
=>\(\left(2x+5\right)\left(2x-5+2x+5\right)=0\)
=>4x(2x+5)=0
=>\(\left[{}\begin{matrix}x=0\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a: \(\left(3x-2\right)\left(2x-1\right)-\left(6x^2-3x\right)=0\)
\(\Leftrightarrow6x^2-3x-4x+2-6x^2+3x=0\)
\(\Leftrightarrow-4x=-2\)
hay \(x=\dfrac{1}{2}\)
b: \(x^3-\left(x+1\right)\left(x^2-x+1\right)=x\)
\(\Leftrightarrow x=x^3-x^3-1\)
hay x=-1
1) Ta có: \(x^2-4x+4=0\)
\(\Leftrightarrow\left(x-2\right)^2=0\)
\(\Leftrightarrow x-2=0\)
hay x=2
Vậy: S={2}
6x2 - ( 2x + 5 ).( 3x - 2 ) = 7
\(\Leftrightarrow\) 6x2 - ( 6x2 - 4x + 15x - 10 ) = 7
\(\Leftrightarrow\) 6x2 - ( 6x2 + 11x - 10 ) = 7
\(\Leftrightarrow\) 6x2 - 6x2 - 11x + 10 = 7
\(\Leftrightarrow\) -11x = 7 -10
\(\Leftrightarrow\) - 11x = -3
\(\Leftrightarrow\) \(x=\frac{3}{11}\)
Vậy x = \(\frac{3}{11}\)
6x2 - (2x + 5)(3x - 2) = 7
<=> 6x2 - 6x2 - 11x + 10 = 7
<=> -11x + 10 = 7
<=> -11x = 7 - 10
<=> -11x = -3
<=> x = 3/11
=> x = 3/11