Tính D = \(\frac{x+y}{x-y}\) biết 2x2 + y2 = 5xy và 0<x<2y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x2 + 2y2 = 5xy
=> 2x2 + 2y2 - 5xy = 0
=> (x - 2y)(2x - y) = 0
x = 2y (loại)
y = 2x
E = \(\dfrac{x+2x}{x-2x}\)=-3
2x2+2y2=5xy <=> 2(x+y)2=9xy => x+y=\(\sqrt{\frac{9}{2}xy}\)
Và: 2(x-y)2=xy => x-y=\(\sqrt{\frac{1}{2}xy}\). Thay vào K ta được:
K=\(\frac{\sqrt{\frac{9}{2}xy}}{\sqrt{\frac{1}{2}xy}}=\sqrt{9}\)=3
\(M=x^3+x^2y-2x^2-xy-y^2+3y+x+2017\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-xy-y^2+2y+y+x-2+2019\)
\(\Rightarrow M=\left(x^3+x^2y-2x^2\right)-\left(xy+y^2-2y\right)+\left(y+x-2\right)+2019\)
\(\Rightarrow M=x^2\left(x+y-2\right)-y\left(x+y-2\right)+\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right)\left(x+y-2\right)+2019\)
\(\Rightarrow M=\left(x^2-y+1\right).0+2019\)
\(\Rightarrow M=0+2019\)
\(\Rightarrow M=2019\)
M = x3 + x2y - 2x2 - xy - y2 + 3y + x + 2017
M = (x3 + x2y - 2x2) - (xy + y2 - 2y) + (x + y - 2) + 2019
M = x2. (x + y - 2) - y(x + y - 2) + (x + y - 2) + 2019 = 2019
\(M = x^3 + x^2y - 2x^2 - xy - y^2 + 3y + x + 2017.\)
\(M=(x^3+x^2y-2x^2)-(xy-y^2+2y)+(x+y-2)+2019\)
\(M=x^2.(x+y-2)-y.(x-y+2)+(x+y-2)+2019\)
\(M=x^2.0-y.0+0+2019\)
\(M=0-0+0+2019\)
\(M=2019\)
Lời giải:
Đặt $x=ty$ ($0< t< 2$)
\(2x^2+y^2=5xy\)
\(\Leftrightarrow 2t^2y^2+y^2-5ty^2=0\)
\(\Leftrightarrow y^2(2t^2-5t+1)=0\Rightarrow 2t^2-5t+1=0\) (Do $y\neq 0$)
\(\Leftrightarrow 2(t-\frac{5}{4})^2=\frac{17}{8}\Rightarrow t-\frac{5}{4}=\pm \frac{\sqrt{17}}{4}\)
\(\Rightarrow t=\frac{5\pm \sqrt{17}}{4}\). Mà $0< t< 2$ nên $t=\frac{5-\sqrt{17}}{4}$
Do đó:
\(D=\frac{x+y}{x-y}=\frac{ty+y}{ty-y}=\frac{y(t+1)}{y(t-1)}=\frac{t+1}{t-1}=\frac{\frac{5-\sqrt{17}}{4}+1}{\frac{5-\sqrt{17}}{4}-1}=\frac{1-\sqrt{17}}{2}\)
Lời giải:
Đặt $x=ty$ ($0< t< 2$)
\(2x^2+y^2=5xy\)
\(\Leftrightarrow 2t^2y^2+y^2-5ty^2=0\)
\(\Leftrightarrow y^2(2t^2-5t+1)=0\Rightarrow 2t^2-5t+1=0\) (Do $y\neq 0$)
\(\Leftrightarrow 2(t-\frac{5}{4})^2=\frac{17}{8}\Rightarrow t-\frac{5}{4}=\pm \frac{\sqrt{17}}{4}\)
\(\Rightarrow t=\frac{5\pm \sqrt{17}}{4}\). Mà $0< t< 2$ nên $t=\frac{5-\sqrt{17}}{4}$
Do đó:
\(D=\frac{x+y}{x-y}=\frac{ty+y}{ty-y}=\frac{y(t+1)}{y(t-1)}=\frac{t+1}{t-1}=\frac{\frac{5-\sqrt{17}}{4}+1}{\frac{5-\sqrt{17}}{4}-1}=\frac{1-\sqrt{17}}{2}\)