32.x + 3 - 9x + 1 = 2.3 10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 5( x + 7 ) - 10 = 23.5 b) 72 - 7( 13 - x ) = 14
5( x + 7 ) - 10 = 40 49 - 7( 13 - x ) = 14
5( x + 7 ) = 40 + 10 7( 13 - x ) = 49 - 14
5( x + 7 ) = 50 7( 13 - x ) = 35
x + 7 = 50 : 5 13 - x = 35 : 7
x + 7 = 10 13 - x = 5
x = 10 - 7 x = 13 - 5
x = 3 x = 8
c) 5x - 52 = 10 d) 9x - 2.32 = 34
5x - 25 = 10 9x - 2.9 = 81
5x = 10 + 25 9x - 18 = 81
5x = 35 9x = 81 + 18
x = 35 : 5 9x = 99
x = 7 x = 99 : 9
x = 11
~ Hok tốt ~ ( Giờ mik mới thấy bài của bạn ỌwỌ )
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 5.2² + (x + 3) = 5²
5.4 + x + 3 = 25
20 + x + 3 = 25
x + 23 = 25
x = 25 - 23
x = 2
b) 2³ + (x - 3²) = 5³ - 4³
8 + (x - 9) = 125 - 64
8 + x - 9 = 61
x - 1 = 61
x = 61 + 1
x = 62
c) 4.(x - 5) - 2³ = 2⁴.3
4x - 20 - 8 = 16.3
4x - 28 = 48
4x = 48 + 28
4x = 76
x = 76 : 4
x = 19
d) 5.(x + 7) - 10 = 2³.5
5x + 35 - 10 = 8.5
5x + 25 = 40
5x = 40 - 25
5x = 15
x = 15 : 5
x = 3
e) 7² - 7.(13 - x) = 14
49 - 91 + 7x = 14
7x - 42 = 14
7x = 14 + 42
7x = 56
x = 56 : 7
x = 8
a) \(5\cdot2^2+\left(x+3\right)=5^2\)
\(\Rightarrow x+3=5^2-5\cdot2^2\)
\(\Rightarrow x+3=25-5\cdot4\)
\(\Rightarrow x+3=5\)
\(\Rightarrow x=5-3\)
\(\Rightarrow x=2\)
b) \(2^3+\left(x-3^2\right)=5^3-4^3\)
\(\Rightarrow8+\left(x-9\right)=125-64\)
\(\Rightarrow8+x-9=61\)
\(\Rightarrow x-1=61\)
\(\Rightarrow x=61+1\)
\(\Rightarrow x=62\)
c) \(4\left(x-5\right)-2^3=2^4\cdot3\)
\(\Rightarrow4\left(x-5\right)=2^4\cdot3+2^3\)
\(\Rightarrow4\cdot\left(x-5\right)=16\cdot3+8\)
\(\Rightarrow4\cdot\left(x-5\right)=56\)
\(\Rightarrow x-5=56:4\)
\(\Rightarrow x-5=14\)
\(\Rightarrow x=19\)
d) \(5\left(x+7\right)-10=2^3\cdot5\)
\(\Rightarrow5\left(x+7\right)=8\cdot5+10\)
\(\Rightarrow5\left(x+7\right)=40+10\)
\(\Rightarrow5\left(x+7\right)=50\)
\(\Rightarrow x+7=10\)
\(\Rightarrow x=10-7\)
\(\Rightarrow x=3\)
e) \(7^2-7\left(13-x\right)=14\)
\(\Rightarrow7\left(13-x\right)=7^2-14\)
\(\Rightarrow7\left(13-x\right)=49-14\)
\(\Rightarrow7\left(13-x\right)=35\)
\(\Rightarrow13-x=5\)
\(\Rightarrow x=13-5\)
\(\Rightarrow x=8\)
f) \(5x-5^2=10\)
\(\Rightarrow5x=10+5^2\)
\(\Rightarrow5x=10+25\)
\(\Rightarrow5x=35\)
\(\Rightarrow x=\dfrac{35}{5}\)
\(\Rightarrow x=7\)
g) \(9x-2\cdot3^2=3^4\)
\(\Rightarrow9x=3^4+2\cdot3^2\)
\(\Rightarrow9x=81+2\cdot9\)
\(\Rightarrow9x=99\)
\(\Rightarrow x=\dfrac{99}{9}\)
\(\Rightarrow x=11\)
h) \(10x+2^2\cdot5=10^2\)
\(\Rightarrow10x=10^2-2^2\cdot5\)
\(\Rightarrow10x=100-4\cdot5\)
\(\Rightarrow10x=80\)
\(\Rightarrow x=\dfrac{80}{10}\)
\(\Rightarrow x=8\)
i) \(125-5\left(4+x\right)=15\)
\(\Rightarrow5\left(4+x\right)=125-5\)
\(\Rightarrow5\left(4+x\right)=120\)
\(\Rightarrow4+x=\dfrac{120}{5}\)
\(\Rightarrow4+x=24\)
\(\Rightarrow x=24-4\)
\(\Rightarrow x=20\)
j) \(2^6+\left(5+x\right)=3^4\)
\(\Rightarrow5+x=3^4-2^6\)
\(\Rightarrow5+x=81-64\)
\(\Rightarrow5+x=17\)
\(\Rightarrow x=17-5\)
\(\Rightarrow x=12\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(2x+1\right)^3=125\\ \Rightarrow\left(2x+1\right)^3=5^3\\ \Rightarrow2x+1=5\\ \Rightarrow2x=4\\ \Rightarrow x=2.\\ b,\left(2x-1\right)^4=16\\ \Rightarrow\left(2x-1\right)^4=2^4\\ \Rightarrow2x-1=2\\ \Rightarrow2x=3\\ \Rightarrow x=\dfrac{3}{2}.\\ c,6.3^x-2.3^x=36\\ \Rightarrow3^x.\left(6-2\right)=36\\ \Rightarrow3^x.4=36\\ \Rightarrow3^x=9\\ \Rightarrow3^x=3^2\\ \Rightarrow x=2.\\ d,2^{x+1}-2^x=32\\ \Rightarrow2^x.\left(2-1\right)=32\\ \Rightarrow2^x=2^5\\ \Rightarrow x=5.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+1\right)^3=2^3.3+3\)
\(\Rightarrow\left(x+1\right)^3=24+3=27=3^3\)
\(\Rightarrow x+1=3\Rightarrow x=2\)
\(5+2.3^x+2=23\)
\(\Rightarrow7+2.3^x=23\)
\(\Rightarrow2.3^x=23-7=16\)
\(\Rightarrow3^x=8.\)
Mà số 3 lũy thừa mấy cũng không thể bằng 8 => x không thỏa mãn.
![](https://rs.olm.vn/images/avt/0.png?1311)
c) x2 + 9x = 10
x2 + 9x - 10 = 0
=> x2 - x + 10x - 10 = 0
=> x(x - 1) + 10(x - 1) = 0
=> (x + 10)(x - 1) = 0
=> \(\orbr{\begin{cases}x=-10\\x=1\end{cases}}\)
d) 2x2 + 9x = 35
=> 2x2 + 9x - 35 = 0
=> 2x2 + 14x - 5x - 35 = 0
=> 2x(x + 7) - 5(x + 7) = 0
=> (x + 7)(2x - 5) = 0
=> \(\orbr{\begin{cases}x=-7\\x=\frac{5}{3}\end{cases}}\)
(x2 - 2x - 1)2 - 5(x2 - 2x - 1) - 14 = 0
=> (x2 - 2x - 1)2 + 2(x2 - 2x - 1) - 7(x2 - 2x - 1) - 14 = 0
=> (x2 - 2x - 1)(x2 - 2x + 1) - 7(x2 - 2x + 1) = 0
=> (x2 - 2x + 1)(x2 - 2x - 8) = 0
=> (x - 1)2 (x - 4)(x + 2) = 0
=> x = 1 hoặc x = 4 hoặc x = -2
e) (2k2 + 5k + 1)2 - 12(2k2 + 5k + 1) + 32 = 0
=> (2k2 + 5x + 1)2 - 4(2k2 + 5k + 1) - 8(2k2 + 5k + 1) + 32 = 0
=> (2k2 + 5k + 1)(2k2 + 5k - 3) - 8(2k2 + 5k - 3) = 0
=> (2k2 + 5k - 3)(2k2 + 5k - 7) = 0
=> (2k2 + 6k - k - 3)(2k2 - 2x + 7k - 7) = 0
=> (k + 3)(2k - 1)(k - 1)(2k + 7) = 0
=> k = -3 hoặc k = 1/2 hoặc k = 1 hoặc k = -7/2
1.x2 + 6x = 0 < như này nhỉ ? >
⇔ x( x + 6 ) = 0
⇔ x = 0 hoặc x + 6 = 0
⇔ x = 0 hoặc x = -6
2. x2 - 25x + 250 = 0
⇔ ( x2 - 25x + 625/4 ) + 375/4 = 0
⇔ ( x - 25/2 )2 = -375/4 ( vô lí )
=> Phương trình vô nghiệm
3. x2 + 9x = 10
⇔ x2 + 9x - 10 = 0
⇔ x2 - x + 10x - 10 = 0
⇔ x( x - 1 ) + 10( x - 1 ) = 0
⇔ ( x - 1 )( x + 10 ) = 0
⇔ x - 1 = 0 hoặc x + 10 = 0
⇔ x = 1 hoặc x = -10
4. 2x2 + 9x = 35
⇔ 2x2 + 9x - 35 = 0
⇔ 2x2 + 14x - 5x - 35 = 0
⇔ 2x( x + 7 ) - 5( x + 7 ) = 0
⇔ ( x + 7 )( 2x - 5 ) = 0
⇔ x + 7 = 0 hoặc 2x - 5 = 0
⇔ x = -7 hoặc x = 5/2
5. ( x2 - 2x - 1 )2 - 5( x2 - 2x - 1 ) - 14 = 0
Đặt t = x2 - 2x - 1
bthuc ⇔ t2 - 5t - 14 = 0
⇔ t2 - 7t + 2t - 14 = 0
⇔ t( t - 7 ) + 2( t - 7 ) = 0
⇔ ( t - 7 )( t + 2 ) = 0
⇔ ( x2 - 2x - 1 - 7 )( x2 - 2x - 1 + 2 ) = 0
⇔ ( x2 - 4x + 2x - 8 )( x - 1 )2 = 0
⇔ ( x - 4 )( x + 2 )( x - 1 )2 = 0
⇔ x - 4 = 0 hoặc x + 2 = 0 hoặc x - 1 = 0
⇔ x = 4 hoặc x = -2 hoặc x = 1
6. ( 2k2 + 5k + 1 )2 - 12( 2k2 + 5k + 1 ) + 32 = 0
Đặt t = 2k2 + 5k + 1
bthuc ⇔ t2 - 12t + 32 = 0
⇔ t2 - 8t - 4t + 32 = 0
⇔ t( t - 8 ) - 4( t - 8 ) = 0
⇔ ( t - 8 )( t - 4 ) = 0
⇔ ( 2k2 + 5k + 1 - 8 )( 2k2 + 5k + 1 - 4 ) = 0
⇔ ( 2k2 - 2k + 7k - 7 )( 2k2 - k + 6k - 3 ) = 0
⇔ ( k - 1 )( 2k + 7 )( 2k - 1 )( k + 3 ) = 0
⇔ k = 1 hoặc k = -7/2 hoặc k = 1/2 hoặc k = -3
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 2xy + 3z + 6y + xz
= (2xy + 6y) + (xz + 3z)
= 2y(x + 3) + z(x + 3)
= (2y + z)(x + 3)
b) 9x - x3
= x(9 - x2)
= x(3 + x)(3 - x)
c) xz + yz + 5.(x + y)
= (xz + yz) + 5(x + y)
= z(x + y) + 5(x + y)
= (z + 5)(x + y)
d) x2 + 4x - y2 + 4
= (x2 + 4x + 4) - y2
= (x + 2)2 - y2
= (x + 2 + y)(x + 2 - y)
có j til mik nha
a) 2xy + 3z + 6y + xz
* Gợi ý : Câu này ta dùng phương pháp nhóm hạng tử và đặt thừ số chung.
Giải :
\(=\left(2xy+6y\right)+\left(3z+xz\right)\)
\(=2y\left(x+3\right)+z\left(x+3\right)\)
\(=\left(2y+z\right)\left(x+3\right)\)
b) 9x - x3
* Gợi ý : Câu này ta dùng phương pháp đặt thừ số chung và dùng hằng đẳng thức.
\(=9.x-x^2.x\)
\(=x\left(9-x^2\right)\)
\(=x\left[\left(3\right)^2-x^2\right]\)
\(=x.\left(3+x\right)\left(3-x\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1/ \(\Leftrightarrow\left|2x-1\right|=7\Leftrightarrow\left[{}\begin{matrix}2x-1=7\\2x-1=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-3\end{matrix}\right.\)
2/ \(\Leftrightarrow6\sqrt{x+2}-2\sqrt{x+2}=9\sqrt{x+2}-10\)
\(\Leftrightarrow5\sqrt{x+2}=10\)
\(\Leftrightarrow\sqrt{x+2}=2\)
\(\Leftrightarrow x=2\)
32x + 3 - 9x + 1 = 2.310
<=> 32x + 3 - (32)x + 1 = 2.310
<=> 32x + 3 - 32x+ 2 = 2.310
<=> 32x + 2 ( 3 - 1 ) = 2.310
<=> 32x + 2 . 2 = 2.310
<=> 32x + 2 = 310
<=> 2x + 2 = 10
<=> 2x = 8
<=> x = 4