Tìm m để mỗi pt sau có nghiệm dương
a, \(x^2+4x+m-2=0\) b, \(x^2+mx+2=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
Phương trình có 2 nghiệm khi:
\(\left\{{}\begin{matrix}m+1\ne0\\\Delta=m^2-12\left(m+1\right)\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\\left[{}\begin{matrix}m\ge6+4\sqrt{3}\\m\le6-4\sqrt{3}\end{matrix}\right.\end{matrix}\right.\) (1)
Khi đó theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{m}{m+1}\\x_1x_2=\dfrac{3}{m+1}\end{matrix}\right.\)
Hai nghiệm cùng lớn hơn -1 \(\Rightarrow-1< x_1\le x_2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_1+1>0\\x_1+x_2>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{m+1}-\dfrac{m}{m+1}+1>0\\-\dfrac{m}{m+1}>-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{m+1}>0\\\dfrac{m+2}{m+1}>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>-1\\\left[{}\begin{matrix}m>-1\\m< -2\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>-1\)
Kết hợp (1) \(\Rightarrow\left[{}\begin{matrix}-1< m< 6-4\sqrt{3}\\m\ge6+4\sqrt{3}\end{matrix}\right.\)
Những bài này đều là dạng toán lớp 10, thi lớp 9 chắc chắn sẽ không gặp phải
1. Có 2 cách giải:
C1: đặt \(f\left(x\right)=x^2+2mx-3m^2\)
\(x_1< 1< x_2\Leftrightarrow1.f\left(1\right)< 0\Leftrightarrow1+2m-3m^2< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
C2: \(\Delta'=4m^2\ge0\) nên pt luôn có 2 nghiệm
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=-3m^2\end{matrix}\right.\)
\(x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)
\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)
\(\Leftrightarrow-3m^2+2m+1< 0\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)
\(m^2x-2m+2mx+2-3x=0\)
\(\Leftrightarrow\left(m^2+2m-3\right)x=2\left(m-1\right)\)
\(\Leftrightarrow\left(m-1\right)\left(m+3\right)x=2\left(m-1\right)\)
- Với \(m=1\) pt có vô số nghiệm (ktm)
- Với \(m\ne1\Rightarrow x=\dfrac{2}{m+3}>0\Rightarrow m>-3\)
Vậy để pt có nghiệm dương duy nhất \(\Leftrightarrow\left\{{}\begin{matrix}m>-3\\m\ne1\end{matrix}\right.\)
bài 1: a) \(mx^2-2\left(m-1\right)x+m+1=0\)
\(\Delta'=\left[-\left(m-1\right)\right]^2-m\left(m+1\right)\)
\(\Delta'=m^2-2m+1-m^2-m\)
\(\Delta'=-3m+1\)
để pt đã cho vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m+1< 0\Leftrightarrow m>\dfrac{1}{3}\)
b) \(3x^2+mx+m^2=0\)
có \(\Delta=m^2-4.3.m^2\)
\(\Delta=m^2-12m^2=-11m^2\)
để pt đã cho vô nghiệm thì \(\Delta< 0\Leftrightarrow-11m^2< 0\Leftrightarrow m>0\)
c) \(m^2.x^2-2m^2x+4m^2+6m+3=0\)
\(\Delta'=\left(-m^2\right)^2-m^2.\left(4m^2+6m+3\right)\)
\(\Delta'=m^4-4m^4-6m^3-3m^2\)\(\Delta'=-3m^4-6m^3-3m^2\)
để pt vô nghiệm thì \(\Delta'< 0\Leftrightarrow-3m^4-6m^3-3m^2< 0\)
\(\Leftrightarrow-3m^2.\left(m^2+2m+1\right)< 0\)
\(\Leftrightarrow-3m^2.\left(m+1\right)^2< 0\)
\(\Leftrightarrow-3m^2< 0\) ( vì \(\left(m+1\right)^2>0\forall m\ne-1\) )
\(\Leftrightarrow m>0\)
vậy \(m>0\) và \(m\ne1\)
Lời giải:
Để pt có 2 nghiệm dương thì:
\(\left\{\begin{matrix} \Delta=m^2-4(m-10)>0\\ S=m>0\\ P=m-10>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} (m-2)^2+36>0\\ m>0\\ m>10\end{matrix}\right.\Leftrightarrow m>10\)
a/ \(\Delta'=4-\left(m-2\right)=6-m>0\Rightarrow m< 6\)
Do \(x_1+x_2=-4< 0\Rightarrow\) phương trình luôn có ít nhất một nghiệm âm
Để pt có một nghiệm dương thì hai nghiệm trái dấu
\(\Rightarrow ac=m-2< 0\Rightarrow m< 2\)
b/ \(\Delta=m^2-8\)
- Nếu \(\Delta=0\Rightarrow m=\pm2\sqrt{2}\)
\(m=2\sqrt{2}\Rightarrow x_1=x_2=-\sqrt{2}< 0\left(l\right)\)
\(m=-2\sqrt{2}\Rightarrow x_1=x_2=\sqrt{2}\) (thỏa mãn) (1)
- Nếu \(\Delta>0\Rightarrow\left[{}\begin{matrix}m>2\sqrt{2}\\m< -2\sqrt{2}\end{matrix}\right.\) (2)
Do tích hai nghiệm \(\frac{c}{a}=2>0\Rightarrow\) phương trình luôn có 2 nghiệm cùng dấu
Để phương trình có nghiệm dương \(\Rightarrow\) hai nghiệm đều dương
\(\Rightarrow x_1+x_2>0\Rightarrow-m>0\Rightarrow m< 0\) (3)
Kết hợp (1); (2);(3) \(\Rightarrow m\le-2\sqrt{2}\)
A/ Để phương trình $x^2+2x+m+3=0$ vô nghiệm thì \(\Delta'=1^2-\left(m+3\right)=-m-2< 0\Leftrightarrow m>-2\)
KL:...........
B/ Với $m=0$, phương trình trở thành \(-4x-1=0\Leftrightarrow x=\frac{-1}{4}\) (không t/m ycbt)
Với \(m \ne 0\), để $mx^2-2(m+2)x+m-1=0$ vô nghiệm thì \(\Delta'=\left(m+2\right)^2-m\left(m-1\right)< 0\Leftrightarrow5m+4< 0\Leftrightarrow m< -\frac{4}{5}\)
KL: .....................