Tìm x , biết:
\(\left|x-2019\right|-x+2019=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ gt suy ra: \(x+\sqrt{x^2+2019}=\dfrac{2019}{y+\sqrt{y^2+2019}}=\sqrt{y^2+2019}-y\).
Tương tự: \(y+\sqrt{y^2+2019}=\sqrt{x^2+2019}-x\).
Do đó dễ dàng suy ra được: \(x+y=0\).
\(\Rightarrow x=-y\Rightarrow x^{2019}+y^{2019}=x^{2019}+\left(-x\right)^{2019}=0\left(đpcm\right)\).
a)\(2019-\left|x-2019\right|=x\)
\(\Rightarrow2019-x=\left|x-2019\right|\)
=>\(\left|x-2019\right|=-\left(x-2019\right)\)
=>\(x-2019\le0\)
=>\(x\le2019\)
b) Vì \(\left(2x-1\right)^{2018}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2018}\ge0\forall y\)
\(\left|x+y-z\right|\ge0\forall x,y,z\)
=> \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|\ge0\forall x,y,z\)
mà \(\left(2x-1\right)^{2018}+\left(y-\frac{2}{5}\right)^{2018}\)\(+\left|x+y-z\right|=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y-\frac{2}{5}=0\\x+y-z=0\end{cases}}\)=>\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{2}{5}\\z=\frac{9}{10}\end{cases}}\)
a, Ta có:
\(\left|x-2019\right|=\orbr{\begin{cases}x-2019\ge0\Rightarrow x\ge2019\\-x+2019< 0\Rightarrow x< 2019\end{cases}}\)
Xét x<2019 thì |x-2019|=-x+2019
Khi đó: 2019-(-x+2019)=x
\(\Leftrightarrow\)-x+2019=2019-x
\(\Leftrightarrow\)-x+2019+x=2019
\(\Leftrightarrow\)0x+2019=2019
\(\Leftrightarrow\)0x=0 (thỏa mãn)
Xét 2019\(\le\)x thì |x-2019|=x-2019
Khi đó 2019-(x-2019)=x
\(\Leftrightarrow\)2019-x+2019=x
\(\Leftrightarrow\)4038-x=x
\(\Leftrightarrow\)4038=2x
\(\Leftrightarrow\)x=2019(thỏa mãn)
Vậy .......................................................!!!
a, x2(x - 3) + 12 - 4x = 0
<=> x2(x - 3) + 4(3 - x) = 0
<=> x2(x - 3) - 4(x - 3) = 0
<=> (x - 3)(x2 - 4) = 0
<=> x - 3 = 0 hoặc x2 - 4 = 0
<=> x = 3 x2 = 4
<=> x = 3 x = 2 hoặc x = -2
b, 2(x + 5) - x2 - 5x = 0
<=> 2(x + 5) - x(x + 5) = 0
<=> (x + 5)(2 - x) = 0
<=> x + 5 = 0 hoặc 2 - x = 0
<=> x = -5 x = 2
c, 2x(x + 2019) - x - 2019 = 0
<=> 2x(x + 2019) - (x + 2019) = 0
<=> (x + 2019)(2x - 1) = 0
<=> x + 2019 = 0 hoặc 2x - 1 = 0
<=> x = -2019 2x = 1
<=> x = -2019 x = 1/2
Ta có: |x - 2019| ≥ 0 => |x - 2019|2019 ≥ 0
|x - 2020| ≥ 0 => |x - 2020|2020 ≥ 0
+) TH1: \(\hept{\begin{cases}\left|x-2019\right|^{2019}=0\\\left|x-2020\right|^{2020}=1\end{cases}\Rightarrow}\hept{\begin{cases}\left|x-2019\right|=0\\\left|x-2020\right|=1\end{cases}}\Rightarrow\hept{\begin{cases}x-2019=0\\\left|x-2020\right|=1\end{cases}\Rightarrow}\hept{\begin{cases}x=2019\\\left|x-2020\right|=1\end{cases}}\)
Giải: |x - 2020| = 1
TH1: x - 2020 = 1 => x = 2021
TH2: x - 2020 = -1 => x = 2019
Vì 2021 ≠ 2019
=> x = 2019
+) TH2: \(\hept{\begin{cases}\left|x-2019\right|^{2019}=1\\\left|x-2020\right|^{2020}=0\end{cases}\Rightarrow}\hept{\begin{cases}\left|x-2019\right|=1\\\left|x-2020\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}\left|x-2019\right|=1\\x-2020=0\end{cases}\Rightarrow}\hept{\begin{cases}\left|x-2019\right|=1\\x=2020\end{cases}}\)
Giải |x - 2019| = 1
Th1: x - 2019 = 1 => x = 2020
Th2: x - 2019 = -1 => x = 2018
Vì 2018 ≠ 2020
=> x = 2020
Vậy x \(\in\){ 2020; 2019 }
P/s: Ko chắc :)
ủa bạn j ơi chữ x chành bành ra trên đề kìa mà bạn bảo tìm làm j nữa
đâu có đâu bạn ???
Mình dùng công cụ công thức của hoc24.vn mà
Bạn đợi chút nó sẽ load ra liền
\(|2017-x|+|2018-x|+|2019-x|=2\left(1\right)\)
Ta có: \(2017-x=0\Leftrightarrow x=2017\)
\(2018-x=0\Leftrightarrow x=2018\)
\(2019-x=0\Leftrightarrow x=2019\)
Lập bảng xét dấu :
2017-x 2018-x 2019-x 2017 2018 2019 0 0 0 - - - - - - + + + + + +
+) Với \(x\le2017\Rightarrow\hept{\begin{cases}2017-x\ge0\\2018-x>0\\2019-x>0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=2017-x\\|2018-x|=2018-x\\|2019-x|=2019-x\end{cases}\left(2\right)}}\)
Thay (2) vào(1) ta được :
\(2017-x+2018-x+2019-x=2\)
\(6054-3x=2\)
\(3x=6052\)
\(x=\frac{6052}{3}>2017\)( loại )
+) Với \(2017< x\le2018\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x>0\\2019-x>0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=2018-x\\|2019-x|=2019-x\end{cases}\left(3\right)}}\)
Thay (3) vào (1) ta được :
\(x-2017+2018-x+2019-x=2\)
\(2020-x=2\)
\(x=2018\)( chọn )
+) Với \(2018< x\le2019\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x< 0\\2019-x\ge0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=x-2018\\|2019-x|=2019-x\end{cases}\left(4\right)}}\)
Thay (4) vào (1) ta được :
\(x-2017+x-2018+2019-x=2\)
\(x-2016=2\)
\(x=2018\)( loại )
+) Với \(x>2019\Rightarrow\hept{\begin{cases}2017-x< 0\\2018-x< 0\\2019-x< 0\end{cases}\Rightarrow\hept{\begin{cases}|2017-x|=x-2017\\|2018-x|=x-2018\\|2019-x|=x-2019\end{cases}\left(5\right)}}\)
Thay (5) vào (1) ta được :
\(x-2017+x-2018+x-2019=2\)
\(3x-6054=2\)
\(3x=6056\)
\(x=\frac{6056}{3}< 2019\)( loại )
Vậy x=2018
\(Th1:x-2019>0\)
\(x-2019-x+2019=0\)
\(0x=0\)
Vậy \(|x-2019|-x+2019=0\)với tất cả giá trị x
\(th2:x-2019< 0\)
\(-x+2019-x+2019=0\)
\(\Rightarrow2x=4038\)
\(\Rightarrow x=2019\)