K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2019

\(A=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)\(A=\sqrt{4+\sqrt{15}}\left(\sqrt{10}-\sqrt{6}\right)\sqrt{\left(4-\sqrt{15}\right)\left(4+\sqrt{15}\right)}\)

\(A=\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)=\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}\left(\sqrt{5}-\sqrt{3}\right)\)

\(A=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)

5 tháng 9 2023

a) \(\left(\sqrt{14}+\sqrt{6}\right)\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14}\cdot\sqrt{5-\sqrt{21}}+\sqrt{6}\cdot\sqrt{5-\sqrt{21}}\)

\(=\sqrt{14\cdot\left(5-\sqrt{21}\right)}+\sqrt{6\cdot\left(5-\sqrt{21}\right)}\)

\(=\sqrt{70-14\sqrt{21}}+\sqrt{30-6\sqrt{21}}\)

\(=\sqrt{7^2-2\cdot7\cdot\sqrt{21}+\left(\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}\right)^2-2\cdot3\cdot\sqrt{21}+3^2}\)

\(=\sqrt{\left(7-\sqrt{21}\right)^2}+\sqrt{\left(\sqrt{21}-3\right)^2}\)

\(=\left|7-\sqrt{21}\right|+\left|\sqrt{21}-3\right|\)

\(=7-\sqrt{21}+\sqrt{21}-3\)

\(=4\)

b) \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(=\left[4\cdot\left(\sqrt{10}-\sqrt{6}\right)+\sqrt{15}\cdot\left(\sqrt{10}-\sqrt{6}\right)\right]\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right)\sqrt{4-\sqrt{15}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\sqrt{10\cdot\left(4-\sqrt{15}\right)}+\sqrt{6\cdot\left(4-\sqrt{15}\right)}\)

\(=\sqrt{40-10\sqrt{15}}+\sqrt{24-6\sqrt{15}}\)

\(=\sqrt{5^2-2\cdot5\cdot\sqrt{15}+\left(\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}\right)^2-2\cdot3\cdot\sqrt{15}+3^2}\)

\(=\sqrt{\left(5-\sqrt{15}\right)^2}+\sqrt{\left(\sqrt{15}-3\right)^2}\)

\(=\left|5-\sqrt{15}\right|+\left|\sqrt{15}-3\right|\)

\(=5-\sqrt{15}+\sqrt{15}-3\)

\(=2\)

$(4+\sqrt{15})(\sqrt{10}-\sqrt6)\sqrt{4-\sqrt{15}}$

$=\sqrt{4+\sqrt{15}}.\sqrt{4+\sqrt{15}}.(\sqrt{10}-\sqrt6)\sqrt{4-\sqrt{15}}$

$=(\sqrt{10}-\sqrt6)\sqrt{4+\sqrt{15}}\sqrt{16-15}$

$=\sqrt2(\sqrt5-\sqrt3)\sqrt{4+\sqrt{15}}$

$=(\sqrt5-\sqrt3)\sqrt{8+2\sqrt{15}}$

$=(\sqrt5-\sqrt3)\sqrt{5+2\sqrt{5}.\sqrt3+3}$

$=(\sqrt5-\sqrt3)\sqrt{(\sqrt5+\sqrt3)^2}$

$=(\sqrt5-\sqrt3)(\sqrt5+\sqrt3)=5-3=2$

Tính

a) Ta có: \(A=\left(\sqrt{6}+\sqrt{10}\right)-\sqrt{4-\sqrt{15}}\)

\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)-\sqrt{4-\sqrt{15}}\)

\(=\sqrt{3}+\sqrt{5}-\sqrt{8-2\sqrt{15}}\)

\(=\sqrt{3}+\sqrt{5}-\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)

\(=\sqrt{3}+\sqrt{5}-\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\sqrt{3}+\sqrt{5}-\left|\sqrt{5}-\sqrt{3}\right|\)

\(=\sqrt{3}+\sqrt{5}-\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\sqrt{3}+\sqrt{5}-\sqrt{5}+\sqrt{3}\)

\(=2\sqrt{3}\)

c) Ta có: \(C=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{2}\cdot\sqrt{4-\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{5-2\cdot\sqrt{5}\cdot\sqrt{3}+3}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\left|\sqrt{5}-\sqrt{3}\right|\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)^2\)

\(=\left(4+\sqrt{15}\right)\cdot\left(8-2\sqrt{15}\right)\)

\(=2\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)\)

\(=2\left[4^2-\left(\sqrt{15}\right)^2\right]\)

\(=2\cdot\left[16-15\right]=2\cdot1=2\)

16 tháng 9 2021

\(=\sqrt{4+\sqrt{15}}\left(\sqrt{4+\sqrt{15}}\cdot\sqrt{4-\sqrt{15}}\right)\left(\sqrt{10}-\sqrt{6}\right)\\ =\sqrt{4+\sqrt{15}}\left(16-15\right)\left(\sqrt{10}-\sqrt{6}\right)\\ =\sqrt{2\left(4+\sqrt{15}\right)}\left(\sqrt{5}-\sqrt{3}\right)\\ =\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)\\ =\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=5-3=2\)

3 tháng 5 2018

\(A=\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}-\frac{\sqrt{a}-1}{\sqrt{a}+1}+4\sqrt{a}\right)\left(\sqrt{a}+\frac{1}{\sqrt{a}}\right)\)

\(A=\)\(\left[\frac{\left(\sqrt{a}+1\right)^2-\left(\sqrt{a}-1\right)^2}{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}+\frac{4\sqrt{a}\left(a-1\right)}{a-1}\right]\left[\frac{a+1}{\sqrt{a}}\right]\)

\(A=\frac{a+2\sqrt{a}+1-a+2\sqrt{a}-1+4a\sqrt{a}-4\sqrt{a}}{a-1}.\)  \(\frac{a+1}{\sqrt{a}}\)

\(A=\frac{4a\sqrt{a}}{a-1}.\frac{a+1}{\sqrt{a}}\)

\(A=\frac{4a\left(a+1\right)}{a-1}\)

ta có \(a=\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)

\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{8-2\sqrt{15}}\)

\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\sqrt{\left(\sqrt{5}-\sqrt{3}\right)^2}\)

\(a=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(a=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(a=\left(4+\sqrt{15}\right).2\left(4-\sqrt{15}\right)\)

\(a=2\left(16-15\right)\)

\(a=2\)

khi đó \(A=\frac{4.2.\left(2+1\right)}{2-1}=8.3=24\)

vậy.....

16 tháng 7 2016

\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\left(\sqrt{4-\sqrt{15}}\right)\)

\(=\left(\sqrt{4+\sqrt{15}}.\sqrt{4-\sqrt{15}}\right).\sqrt{2}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4+\sqrt{15}}\)

\(=\sqrt{4^2-15}.\left(\sqrt{5}-\sqrt{3}\right).\sqrt{8+2\sqrt{15}}=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}\right)\)

\(=\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)=5-3=2\)

16 tháng 7 2016

kq cua mk la 2

\(C=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)

\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)

\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)

20 tháng 5 2022

`C=(4+\sqrt{15})(\sqrt{10}-\sqrt{6})\sqrt{4-\sqrt{15}}`

`C=(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10})\sqrt{4-\sqrt{15}}`

`C=(\sqrt{10}+\sqrt{6})\sqrt{4-\sqrt{15}}`

`C=\sqrt{(\sqrt{10}+\sqrt{6})^2 .(4-\sqrt{15})}`

`C=\sqrt{(10+6+2\sqrt{60})(4-\sqrt{15})}`

`C=\sqrt{(16+4\sqrt{15})(4-\sqrt{15})}`

`C=\sqrt{64-16\sqrt{15}+16\sqrt{15}-60}`

`C=\sqrt{4}=2`

10 tháng 7 2015

\(A=\left(\sqrt{5}-\sqrt{2}\right)^2+2\sqrt{10}=\left(\sqrt{5}\right)^2-2\sqrt{5}\sqrt{2}+\left(\sqrt{2}\right)^2+2\sqrt{10}\)

=\(5-2\sqrt{10}+2+2\sqrt{10}=7\)

câu b hình như sai đề

\(C=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)=\sqrt{3-\sqrt{5}}\sqrt{2}\left(\sqrt{5}-1\right)\)

\(=\sqrt{2\left(3-\sqrt{5}\right)}\left(\sqrt{5}-1\right)=\sqrt{6-2\sqrt{5}}\left(\sqrt{5}-1\right)\)

=\(\sqrt{5-2\sqrt{5}+1}\left(\sqrt{5}-1\right)=\sqrt{\left(\sqrt{5}-1\right)^2}\left(\sqrt{5}-1\right)\)

=\(\left(\sqrt{5}-1\right)\left(\sqrt{5}-1\right)=\left(\sqrt{5}-1\right)^2=\left(\sqrt{5}\right)^2-2\sqrt{5}+1\)

=\(6-2\sqrt{5}\)

10 tháng 7 2015

\(A=\left(\sqrt{5}-\sqrt{2}\right)^2+2\sqrt{10}=\left(\sqrt{5.1}-\sqrt{2.1}\right)^2+2\sqrt{10}=7-2\sqrt{10}+2\sqrt{10}=7\)        

Câu B hình như có cái gì đó không ổn          

\(C=\sqrt{3-\sqrt{5}}\left(\sqrt{10}-\sqrt{2}\right)=\sqrt{3-\sqrt{5}}\sqrt{2}\left(\sqrt{5}-1\right)=\sqrt{2\left(3-\sqrt{5}\right)}\left(\sqrt{5-1}\right)=\sqrt{6-2\sqrt{5}}\left(-1+\sqrt{5}\right)=6-2\sqrt{5}\)