CMR: tan \(15^0\)=\(2-\sqrt{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\sin x = \frac{{\sqrt 3 }}{2}\;\; \Leftrightarrow \sin x = \sin \frac{\pi }{3}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \pi - \frac{\pi }{3} + k2\pi }\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{{2\pi }}{3} + k2\pi \;}\end{array}\;} \right.\left( {k \in \mathbb{Z}} \right)\)
b) \(2\cos x = - \sqrt 2 \;\; \Leftrightarrow \cos x = - \frac{{\sqrt 2 }}{2}\;\;\; \Leftrightarrow \cos x = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{3\pi }}{4} + k2\pi }\\{x = - \frac{{3\pi }}{4} + k2\pi }\end{array}\;\;\left( {k \in \mathbb{Z}} \right)} \right.\)
c) \(\sqrt 3 \;\left( {\tan \frac{x}{2} + {{15}^0}} \right) = 1\;\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \frac{1}{{\sqrt 3 }}\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \tan \frac{\pi }{6}\)
\( \Leftrightarrow \frac{x}{2} + \frac{\pi }{{12}} = \frac{\pi }{6} + k\pi \;\;\;\; \Leftrightarrow \frac{x}{2} = \frac{\pi }{{12}} + k\pi \;\;\; \Leftrightarrow x = \frac{\pi }{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
d) \(\cot \left( {2x - 1} \right) = \cot \frac{\pi }{5}\;\;\;\; \Leftrightarrow 2x - 1 = \frac{\pi }{5} + k\pi \;\;\;\; \Leftrightarrow 2x = \frac{\pi }{5} + 1 + k\pi \;\; \Leftrightarrow x = \frac{\pi }{{10}} + \frac{1}{2} + \frac{{k\pi }}{2}\;\;\left( {k \in \mathbb{Z}} \right)\)
c/
ĐKXĐ: ...
\(\Leftrightarrow tan2x-2=3\left(2tan2x+1\right)\)
\(\Leftrightarrow5tan2x=-5\)
\(\Rightarrow tan2x=-1\)
\(\Rightarrow2x=-\frac{\pi}{4}+k\pi\)
\(\Rightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)
d/
ĐKXĐ: ...
\(\Leftrightarrow sinx+\sqrt{3}cosx=3sinx-\sqrt{3}cosx\)
\(\Leftrightarrow2sinx=2\sqrt{3}cosx\)
\(\Rightarrow tanx=\sqrt{3}\Rightarrow x=\frac{\pi}{3}+k\pi\)
a/
\(\Leftrightarrow tanx=-tan\left(\frac{2\pi}{3}-3x\right)\)
\(\Leftrightarrow tanx=tan\left(3x-\frac{2\pi}{3}\right)\)
\(\Rightarrow x=3x-\frac{2\pi}{3}+k\pi\)
\(\Rightarrow x=\frac{\pi}{3}+\frac{k\pi}{2}\)
b/
\(tan\left(2x-15^0\right)=tanx\)
\(\Rightarrow2x-15^0=x+k180^0\)
\(\Rightarrow x=15^0+k180^0\)
Đề bài đúng: \(\dfrac{\sqrt{4-\sqrt{15}}\left(\sqrt{5}+\sqrt{3}\right)}{\sqrt{2}}=1\)
Hoặc: \(\dfrac{\sqrt{4+\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)}{\sqrt{2}}=1\)
\(=\dfrac{\sqrt{8+2\sqrt{15}}\left(\sqrt{5}-\sqrt{3}\right)}{2}=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{2}=\dfrac{5-3}{2}=1\)
a. Có nhiều cách nhé. Với lớp 9 cô dùng cách này. Cô hướng dẫn nhé :)
A B C 15 0 D
Giả thiệt cho như hình vẽ. Gỉa sử AB = 1cm, khi đó do góc ADB = 30độ nên \(\frac{AB}{BD}=\frac{1}{2};\frac{AB}{AD}=\frac{\sqrt{3}}{3}\)
Vậy \(AC=AD+DC=AD+DB=2+\sqrt{3}\)
Vậy \(tan15=\frac{AB}{AC}=\frac{1}{2+\sqrt{3}}=2-\sqrt{3}\)
b. Dựa vào công thức : \(tan^215+1=\frac{1}{cos^215}\)
c/
\(\Leftrightarrow tan\left(60^0-x\right)=-\frac{1}{\sqrt{3}}\)
\(\Rightarrow60^0-x=-30^0+k180^0\)
\(\Rightarrow x=90^0+k180^0\)
d/
\(\Leftrightarrow tan\left(3x+\frac{2\pi}{5}\right)=-tan\left(\frac{\pi}{5}\right)\)
\(\Leftrightarrow tan\left(3x+\frac{2\pi}{5}\right)=tan\left(-\frac{\pi}{5}\right)\)
\(\Rightarrow3x+\frac{2\pi}{5}=-\frac{\pi}{5}+k\pi\)
\(\Rightarrow x=-\frac{\pi}{5}+\frac{k\pi}{3}\)
a/
\(\Leftrightarrow tan2x=-tan40^0\)
\(\Leftrightarrow tan2x=tan\left(-40^0\right)\)
\(\Rightarrow2x=-40^0+k180^0\)
\(\Rightarrow x=-20^0+k90^0\)
b/
\(\Leftrightarrow tan\left(2x-15^0\right)=1\)
\(\Rightarrow2x-15^0=45^0+k180^0\)
\(\Rightarrow x=30^0+k90^0\)
Ta có: \(A=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-3x+8\sqrt{x}-5-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}-\dfrac{2}{3}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow A-\dfrac{2}{3}=\dfrac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\le0\)
\(\Leftrightarrow A\le\dfrac{2}{3}\)
Bài 5. a) Vì = tan 300 nên
tan (x - 150) = ⇔ tan (x - 150) = tan 300
⇔ x - 150 = 300 + k1800 ⇔ x = 450 + k1800 , (k ∈ Z).
b) Vì -√3 = cot() nên
cot (3x - 1) = -√3 ⇔ cot (3x - 1) = cot()
⇔ 3x - 1 = + kπ ⇔ x =
c) Đặt t = tan x thì cos2x = , phương trình đã cho trở thành
. t = 0 ⇔ t ∈ {0 ; 1 ; -1} .
Vì vậy phương trình đã cho tương đương với
d) sin 3x . cot x = 0 ⇔ .
Với điều kiện sinx # 0, phương trình tương đương với
sin 3x . cot x = 0 ⇔
Với cos x = 0 ⇔ x = + kπ, k ∈ Z thì sin2x = 1 – cos2x = 1 – 0 = 1 => sinx # 0, điều kiện được thỏa mãn.
Với sin 3x = 0 ⇔ 3x = kπ ⇔ x = , (k ∈ Z). Ta còn phải tìm các k nguyên để x = vi phạm điều kiện (để loại bỏ), tức là phải tìm k nguyên sao cho sin = 0, giải phương trình này (với ẩn k nguyên), ta có
sin = 0 ⇔ = lπ, (l ∈ Z) ⇔ k = 3l ⇔ k : 3.
Do đó phương trình đã cho có nghiệm là x = + kπ, (k ∈ Z) và x = (với k nguyên không chia hết cho 3).
a) Ta có \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\, = \,1\)
mà \(\sin \alpha = \frac{{\sqrt {15} }}{4}\) nên \({\cos ^2}\alpha + {\left( {\frac{{\sqrt {15} }}{4}} \right)^2}\,\,\, = \,1 \Rightarrow {\cos ^2}\alpha = \frac{1}{{16}}\)
Lại có \(\frac{\pi }{2} < \alpha < \pi \) nên \(\cos \alpha < 0 \Rightarrow \cos \alpha = - \frac{1}{4}\)
Khi đó \(\tan \alpha = \frac{{\sin \alpha }}{{co{\mathop{\rm s}\nolimits} \alpha }} = - \sqrt {15} ;\cot \alpha = \frac{1}{{\tan \alpha }} = - \frac{1}{{\sqrt {15} }}\)
b)
Ta có \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\, = \,1\)
mà \(\cos \alpha = - \frac{2}{3}\) nên \({\sin ^2}\alpha + {\left( {\frac{{ - 2}}{3}} \right)^2}\,\,\, = \,1 \Rightarrow {\sin ^2}\alpha = \frac{5}{9}\)
Lại có \( - \pi < \alpha < 0\) nên \(\sin \alpha < 0 \Rightarrow \sin \alpha = - \frac{{\sqrt 5 }}{3}\)
Khi đó \(\tan \alpha = \frac{{\sin \alpha }}{{co{\mathop{\rm s}\nolimits} \alpha }} = \frac{{\sqrt 5 }}{2};\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{2}{{\sqrt 5 }}\)
c)
Ta có \(\tan \alpha = 3\) nên
\(\cot \alpha = \frac{1}{{\tan \alpha }} = \frac{1}{3}\)
\(\frac{1}{{{{\cos }^2}\alpha }} = 1 + {\tan ^2}\alpha \,\,\, = \,1 + {3^2} = 10\,\, \Rightarrow {\cos ^2}\alpha = \frac{1}{{10}}\)
Mà \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\, = \,1 \Rightarrow {\sin ^2}\alpha = \frac{9}{{10}}\)
Với \( - \pi < \alpha < 0\) thì \(\sin \alpha < 0 \Rightarrow \sin \alpha = - \sqrt {\frac{9}{{10}}} \)
Với \( - \pi < \alpha < - \frac{\pi }{2}\) thì \(\cos \alpha < 0 \Rightarrow \cos \alpha = - \sqrt {\frac{1}{{10}}} \)
và \( - \frac{\pi }{2} \le \alpha < 0\) thì \(\cos \alpha > 0 \Rightarrow \cos \alpha = \sqrt {\frac{1}{{10}}} \)
d)
Ta có \(\cot \alpha = - 2\) nên
\(\tan \alpha = \frac{1}{{\cot \alpha }} = - \frac{1}{2}\)
\(\frac{1}{{{{\sin }^2}\alpha }} = 1 + co{{\mathop{\rm t}\nolimits} ^2}\alpha \,\,\, = \,1 + {( - 2)^2} = 5\,\, \Rightarrow {\sin ^2}\alpha = \frac{1}{5}\)
Mà \({\cos ^2}\alpha + {\sin ^2}\alpha \,\,\, = \,1 \Rightarrow {\cos ^2}\alpha = \frac{4}{5}\)
Với \(0 < \alpha < \pi \) thì \(\sin \alpha > 0 \Rightarrow \sin \alpha = \sqrt {\frac{1}{5}} \)
Với \(0 < \alpha < \frac{\pi }{2}\) thì \(\cos \alpha > 0 \Rightarrow \cos \alpha = \sqrt {\frac{4}{5}} \)
và \(\frac{\pi }{2} \le \alpha < \pi \) thì \(\cos \alpha < 0 \Rightarrow \cos \alpha = - \sqrt {\frac{4}{5}} \)
Đặt \(tan\left(x+\dfrac{\pi}{3}\right)=t\)
\(\Rightarrow t^2+\left(\sqrt{3}-1\right)t-\sqrt{3}=0\)
\(\Leftrightarrow t\left(t-1\right)+\sqrt{3}\left(t-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}tan\left(x+\dfrac{\pi}{3}\right)=1\\tan\left(x+\dfrac{\pi}{3}\right)=-\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{\pi}{3}=\dfrac{\pi}{4}+k\pi\\x+\dfrac{\pi}{3}=-\dfrac{\pi}{3}+k\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{12}+k\pi\\x=-\dfrac{2\pi}{3}+k\pi\end{matrix}\right.\)
Làm sao CM 1 điều hiển nhiên được, tan 15 độ = \(2-\sqrt{3}\)thì ai cũng phải công nhận
Ta có:
\(VT=\tan15^o=2-\sqrt{3}=VP\left(đpcm\right)\)