(2x+5)2-6x-15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(2x^3-5x^2+6x-15\)
\(=\left(2x^3-5x^2\right)+\left(6x-15\right)\)
\(=x^2\left(2x-5\right)+3\left(2x-5\right)\)
\(=\left(x^2+3\right)\left(2x-5\right)\)
\(\Rightarrow\left(2x^3-5x^2+6x-15\right):\left(2x-5\right)=x^2+3\)
\(\left(2x+5\right)^2-6x-15=\left(2x+5\right)^2-3\left(2x-5\right)=\left(2x-5\right)^2-3\left(2x-5\right)\)
\(=\left(2x-5\right)\left(2x-5-3\right)=\left(2x-5\right)\left(2x-2\right)=2\left(2x-5\right)\left(x-1\right)\)
(2x+5)^2-6x-15
=4x2+20x+25-6x-15
=4x2+14x+10
=(2x+1)2+9 (đề bài có nhầm không)
\(ĐKXĐ:x\ne-1;x\ne\dfrac{1}{2}\)
Ta có : \(\dfrac{6x+5}{3x+3}=\dfrac{5-4x}{1-2x}\)
\(\Leftrightarrow\left(6x+5\right)\left(1-2x\right)=\left(5-4x\right)\left(3x+3\right)\)
\(\Leftrightarrow6x-12x^2+5-10x=15x+15-12x^2-12x\)
\(\Leftrightarrow5-4x-12x^2-15-3x+12x^2=0\)
\(\Leftrightarrow-10-7x=0\)
\(\Rightarrow x=\dfrac{-10}{7}\)
\(=\left[x^2\left(2x-5\right)+3\left(2x-5\right)\right]:\left(2x-5\right)\\ =x^2+3\)
2) \(\left(x+3\right)\left(5x-15\right)+2x-6=0\)
\(\Leftrightarrow\left(x+3\right).5.\left(x-3\right)+2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[5\left(x+3\right)+2\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x+17\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\5x+17=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{17}{5}\end{matrix}\right.\)
câu 1 phải là \(\left(x-5\right)\left(x+9\right)+6x=30\)
\(\Leftrightarrow\left(x-5\right)\left(x+9\right)+6x-30=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+9\right)+6\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+9+6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+15\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-15\end{matrix}\right.\)
\(a,=5x^2-5x+3x-3=\left(x-1\right)\left(5x+3\right)\\ b,=2x^2-5x+2x-5=\left(2x-5\right)\left(x+1\right)\\ c,=x^2+5x-3x-15=\left(x+5\right)\left(x-3\right)\\ d,=7x^2-7x+x-1=\left(x-1\right)\left(7x+1\right)\)
\(1,\Leftrightarrow x^2+10x+25=x^2-4x-21\\ \Leftrightarrow14x=-46\\ \Leftrightarrow x=-\dfrac{23}{7}\\ 2,\Leftrightarrow x^3+8=15+x^3+2x\\ \Leftrightarrow2x=-7\Leftrightarrow x=-\dfrac{7}{2}\\ 3,\Leftrightarrow\left(x+3\right)^2=0\\ \Leftrightarrow x=-3\\ 4,\Leftrightarrow x^3-9x^2+27x-27=0\\ \Leftrightarrow\left(x-3\right)^3=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\\ 5,\Leftrightarrow4x^2+4x+1-4x^2-16x-16=9\\ \Leftrightarrow-12x=24\Leftrightarrow x=-2\\ 6,\Leftrightarrow x^2-3x+5x-15=0\\ \Leftrightarrow\left(x-3\right)\left(x+5\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-5\end{matrix}\right.\)
a) \(x^2+4x+10\)
\(=x^2+4x+4+6\)
\(=\left(x+2\right)^2+6\)
Mà: \(\left(x+2\right)^2+6>0\forall x\)
\(\Rightarrow x^2+4x+10>0\forall x\)
b) \(x^2-6x+15\)
\(=x^2-6x+9+6\)
\(=\left(x-3\right)^2+6\)
Mà: \(\left(x-3\right)^2+6>0\forall x\)
\(\Rightarrow x^2-6x+16>0\forall x\)
c) \(-x^2+2x-5\)
\(=-\left(x^2-2x+5\right)\)
\(=-\left(x^2-2x+1+4\right)\)
\(=-\left(x-1\right)^2-4\)
Mà: \(-\left(x-1\right)^2-4< 0\forall x\)
\(\Rightarrow-x^2+2x-5< 0\forall x\)
phan h da thuc tren thanh nhan tu
\(\left(2x+5\right)^2-6x-15\)
\(=4x^2+20x+25-6x-15\)
\(=4x^2+14x+10\)
\(=2\left(2x^2+7x+10\right)\)