K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(ĐKXĐ:\)tự làm nhé

\(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\frac{\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\frac{3x+3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{-3\sqrt{x}-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(P=\left(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\right):\left(\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\right)\)

\(P=\left(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\right):\left(\frac{1+\sqrt{x}}{\sqrt{x}-3}\right)\)

\(P=\left(\frac{-3\left(\sqrt{x}+1\right)}{x-9}\right)\times\left(\frac{\sqrt{x}-3}{\sqrt{x}+1}\right)\)

\(P=\frac{-3}{\sqrt{x}+3}\)

P/s tham khảo

Ukm

It's very hard

l can't do it 

Sorry!

 
7 tháng 9 2020

+) Ta có: \(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\)    \(\left(ĐK:x\ge0\right)\)

        \(\Leftrightarrow4\sqrt{3x}+2\sqrt{3x}=3\sqrt{3x}+6\)

        \(\Leftrightarrow3\sqrt{3x}=6\)

        \(\Leftrightarrow\sqrt{3x}=2\)

        \(\Leftrightarrow3x=4\)

        \(\Leftrightarrow x=\frac{4}{3}\left(TM\right)\)

Vậy \(S=\left\{\frac{4}{3}\right\}\)

+) Ta có:\(\sqrt{x^2-1}-4\sqrt{x-1}=0\)    \(\left(ĐK:x\ge1\right)\)

        \(\Leftrightarrow\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)

        \(\Leftrightarrow\sqrt{x-1}.\left(\sqrt{x+1}-4\right)=0\)

        \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{x+1}=4\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=16\end{cases}}\)

        \(\Leftrightarrow\hept{\begin{cases}x=1\left(TM\right)\\x=15\left(TM\right)\end{cases}}\)

 Vậy \(S=\left\{1,15\right\}\)

+) Ta có: \(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\)       \(\left(ĐK:x\ge0\right)\)

         \(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)

         \(\Leftrightarrow\frac{2.\left(\sqrt{x}-2\right)-\sqrt{x}}{4\sqrt{x}}< 0\)

         \(\Leftrightarrow\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)

         \(\Leftrightarrow\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)

   Để \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)mà \(4\sqrt{x}\ge0\forall x\)

    \(\Rightarrow\)\(\sqrt{x}-4< 0\)

   \(\Leftrightarrow\)\(\sqrt{x}< 4\)

   \(\Leftrightarrow\)\(x< 16\)

   Kết hợp ĐKXĐ \(\Rightarrow\)\(0\le x< 16\)

 Vậy \(S=\left\{\forall x\inℝ/0\le x< 16\right\}\)

7 tháng 9 2020

\(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\)  (Đk: x \(\ge\)0)

<=> \(4\sqrt{3x}+2\sqrt{3x}-3\sqrt{3x}=6\)

<=> \(3\sqrt{3x}=6\)

<=> \(\sqrt{3x}=2\)

<=> \(3x=4\)

<=> \(x=\frac{4}{3}\)

\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) (đk: x \(\ge\)1)

<=> \(\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)

<=> \(\sqrt{x-1}\left(\sqrt{x+1}-4\right)=0\)

<=> \(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\) 

<=> \(\orbr{\begin{cases}x-1=0\\x+1=16\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1\\x=15\end{cases}}\)(tm)

\(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) (Đk: x > 0)

<=> \(\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)

<=>\(\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)

<=>  \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)

Do \(4\sqrt{x}>0\) => \(\sqrt{x}-4< 0\)

<=> \(\sqrt{x}< 4\) <=> \(x< 16\)

Kết hợp với đk => S = {x|0 < x < 16}

5 tháng 10 2015

Áp dụng BĐT bu - nhi -a cốp - xki 

ta có \(B^2=\left(1.\sqrt{2x-3}+1.\sqrt{x-1}+1.\sqrt{7-3x}\right)^2\le\left(1^2+1^2+1^2\right)\left(2x-3+x-1+7-3x\right)\)

       <=> \(b^2\le3.3=9\Rightarrow B\le3\)

Dấu '=' xảy ra khi x = 2 

9 tháng 12 2017

lớp 10 học trường mô đây ?

8 tháng 8 2021

a) \(A=\sqrt{x-2}+\sqrt{6-x}\)

\(\Rightarrow A^2=x-2+6-x+2\sqrt{\left(x-2\right)\left(6-x\right)}\)

Ta có \(\sqrt{\left(x-2\right)\left(6-x\right)}\ge0,\forall x\)

Do đó \(A^2=4+2\sqrt{\left(x-2\right)\left(6-x\right)}\ge4\)

Mà A không âm \(\Leftrightarrow A\ge2\)

Dấu "=" \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

Áp dụng BĐT Bunhiacopxky:

\(A^2=\left(\sqrt{x-2}+\sqrt{6-x}\right)^2\le\left(x-2+6-x\right)\left(1+1\right)=4\cdot2=8\)

\(\Leftrightarrow A\le\sqrt{8}\)

Dấu "=" \(\Leftrightarrow x-2=6-x\Leftrightarrow x=4\)

Mấy bài còn lại y chang nha 

Tick hộ nha

8 tháng 8 2021

ank

 

16 tháng 7 2016

a) 1

b) \(2\sqrt{x-2}+\sqrt{x+2}\)

c)câu này để bạn tự làm nhé