cho a,b>1. Cmr: \(\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(VT=\left[\frac{a^2}{b-1}+4\left(b-1\right)\right]+\left[\frac{b^2}{a-1}+4\left(a-1\right)\right]-4a-4b+8\)
\(\ge2\sqrt{\frac{a^2}{b-1}.4\left(b-1\right)}+2\sqrt{\frac{b^2}{a-1}.4\left(a-1\right)}-4a-4b+8\)
\(=2.2a+2.2b-4a-4b+8\)
\(=\left(4a-4a\right)+\left(4b-4b\right)+8=8^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi \(\frac{a^2}{b-1}=4\left(b-1\right);\frac{b^2}{a-1}=4\left(a-1\right)\)
\(\Leftrightarrow a^2=b^2=4\Leftrightarrow a=b=2\)(t/m)
\(P=\frac{\left(a+1\right)^2}{b}+\frac{\left(b+1\right)^2}{a}\ge\frac{\left(a+b+2\right)^2}{a+b}=\frac{\left(a+b\right)^2+4\left(a+b\right)+4}{a+b}\)
\(\Rightarrow P\ge a+b+\frac{4}{a+b}+4\ge2\sqrt{\frac{4\left(a+b\right)}{a+b}}+4=8\)
\(\Rightarrow p_{min}=8\) khi \(a=b=1\)
Ta có \(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\)
\(\ge\left(a+b+1\right).2ab+\frac{4}{a+b}\)
\(=2.\left(a+b\right)+2+\frac{4}{a+b}\)
\(=a+b+2+a+b+\frac{4}{a+b}\)
\(\ge2.\sqrt{a.b}+2+2.\sqrt{\left(a+b\right).\frac{4}{a+b}}=2+2+2\sqrt{4}\)
\(=2+2+4=8\)
Vậy\(\left(a+b+1\right).\left(a^2+b^2\right)+\frac{4}{a+b}\ge8\)với ab=1
\(\frac{a^2}{b-1}+\frac{b^2}{a-1}\ge\frac{\left(a+b\right)^2}{a+b-2}\left(BĐTbun\right)\)
TA cm : \(\frac{\left(a+b\right)^2}{a+b-2}\ge8\) . Đặt a + b = t
BPT <=> \(\frac{t^2}{t-2}\ge8\Leftrightarrow t^2\ge8t-16\Leftrightarrow t^2-8t+16\ge0\Leftrightarrow\left(t-4\right)^2\ge0\)
BĐt luôn đúng với mọi t
Dấu ''= '' xảy ra khi \(\int^{\frac{a}{b-1}=\frac{b}{a-1}}_{a+b=4}\Rightarrow a=b=2\)
Điều kiện a,b>0 và a+b=1
Có \(\frac{3}{a^2+b^2+ab}\ge\frac{3}{a^2+b^2+\frac{a^2+b^2}{2}}=\frac{3}{\frac{3\left(a^2+b^2\right)}{2}}=\frac{2}{a^2+b^2}\)
Do đó \(\frac{1}{ab}+\frac{3}{a^2+b^2+ab}\ge\frac{2}{2ab}+\frac{2}{a^2+b^2}=2\left(\frac{1}{2ab}+\frac{1}{a^2+b^2}\right)\ge2\left(\frac{\left(1+1\right)^2}{a^2+b^2+2ab}\right)=\frac{8}{\left(a+b\right)^2}=8\left(đpcm\right)\)
\(\frac{1}{a}-1=\frac{a+b+c}{a}-\frac{a}{a}=\frac{b+c}{a}\)
Tương tự : \(\frac{1}{b}-1=\frac{c+a}{b};\frac{1}{c}-1=\frac{a+b}{c}\)
Nhân theo vế ta đc :
\(VT=\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}\)
Áp dụng bđt Cauchy :
\(VT\ge\frac{8abc}{abc}=8\)
Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)
C1: \(VT=\frac{a^2}{b-1}+4\left(b-1\right)+\frac{b^2}{a-1}+4\left(a-1\right)-4\left(a+b\right)+8\)
\(\ge2\sqrt{\frac{a^2}{b-1}.4\left(b-1\right)}+2\sqrt{\frac{b^2}{a-1}.4\left(a-1\right)}-4\left(a+b\right)+8\)
\(=4\left(a+b\right)-4\left(a+b\right)+8=8^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi a = b = 2
C2: áp dụng BĐT Svac:
\(VT\ge\frac{\left(a+b\right)^2}{a+b-2}=\frac{t^2}{t-2}\left(a+b=t\right)\). Ta chứng minh \(\frac{t^2}{t-2}\ge8\Leftrightarrow t^2-8t+16\ge0\Leftrightarrow\left(t-4\right)^2\ge0\)(đúng)
Đẳng thức xảy ra khi ...