Tìm số : \(\overline{xy}\) biết \(\overline{xy}.\overline{xyx}=\overline{xyxy}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như thầy cho đề sai : \(\overline{xxyy}=\overline{xx}^2+\overline{yy}^2\)mới đúng ko chắc nha
Ta có:
\(\overline{xyxy}\)=\(\overline{xy}\).100+\(\overline{xy}\)
Hay:\(\overline{xyxy}\)=\(\overline{xy}\).101
Mà theo bài ra ta có:
\(\overline{xyxy}\)=\(\overline{xy^2}\)+\(\overline{yx^2}\)
Hay:\(\overline{xyxy}\)=\(\overline{xy}\).\(\overline{xy}\)+\(\overline{yx}\).\(\overline{yx}\)
\(\Rightarrow\)101=\(\overline{xy}\)+\(\overline{yx}\).\(\overline{yx}\)
Đến đây mk chịu,còn ko biết đúng ko nữa,mk đăng cho bn xem đúng ko thôi.
Khả năng sai cực cao
\(\overline{xy}=10.x+y\) Khi đó \(\dfrac{\overline{xy}}{x+y}=\dfrac{10x+y}{x+y}\)
Mặt khác \(\dfrac{10x+y}{x+y}=\dfrac{100x+10y}{10\left(x+y\right)}=\dfrac{19\left(x+y\right)+81x-9y}{10\left(x+y\right)}=\dfrac{19}{10}+\dfrac{9\left(9x-y\right)}{10\left(x+y\right)}\ge\dfrac{19}{10}\)
Do đó, \(\dfrac{\overline{xy}}{x+y}\) nhận giá trị nhỏ nhất bằng \(\dfrac{19}{10}\) khi \(9x-y=0\) hay \(x=1,y=9\)
Vậy số cần tìm là 19
* 2xy + 1 =n2(1)
3xy+1=m2(2)
(1) => 2xy chia hết cho 8 => xy chia hết cho 4
(2)=>3xy chia hết cho 8 mà (3;8)=1 => xy chia hết cho 8
*(1)+(2)
=> 5xy +2=m2+n2
VP chia 5 dư 2 => m2+n2 chia 5 dư 2 => m2 và n2 chia 5 dư 1
=>xy chia hết cho 5
(8;5)=1
=>xy chia hết cho 40
Ta có: \(2\overline{xy}=\left(x+2\right)^2+\left(y+4\right)^2\)
\(\Leftrightarrow2\left(10x+y\right)=x^2+4x+4+y^2+8y+16\)
\(\Leftrightarrow x^2-16x+y^2+6y+20=0\)
\(\Leftrightarrow\left(x-8\right)^2+\left(y+3\right)^2=53\)
Ta thấy do x, y là các chữ số nên (x - 8)2 và (y + 3)2 đều là các số chính phương.
Ta có 53 = 49 + 4 và \(y+3\ge3\)
Vậy nên \(\hept{\begin{cases}x-8=2\\y+3=7\end{cases}}\Leftrightarrow\hept{\begin{cases}x=10\\y=4\end{cases}}\left(ktmđk\right)\)
Vậy không tồn tại số cần tìm.
xy. xyx = xyxy
=> xyx = xyxy : xy
=> xyx= (xy.100 +xy) :xy
=> xyx= xy.100 :xy+xy:xy
=> xyx = 100+1
=> xyx = 101
Vậy x= 1; y=0
ez mà man?