CMR:11n+2+12n+1 chia hết cho 133
~~##helpme~~~##
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
11n + 2 + 122n + 1 = 121 . 11n + 12 . 144n
=(133 – 12) . 11n + 12 . 144n = 133 . 11n + (144n – 11n) . 12
Ta có: 133 . 11n chia hết 133; 144n – 11n chia hết (144 – 11)
\Rightarrow⇒ 144n – 11n chia hết 133 \Rightarrow⇒ 11n + 2 + 122n + 1 chia hết cho 133
chúc bạn học tốt !!!
Ta có : m +11n \(⋮\) 12
<=> 9m + 99n \(⋮\) 12
Mà [( 9m + 99n) - (9m +3n) ] = 96n \(⋮\) 12
Vì 9m + 99n \(⋮\) 12 ; 96n \(⋮\) 12
Nên 9m+3n \(⋮\)12 ( đpcm)
\(\left(m+11n\right)⋮12\Rightarrow-3\left(m+11n\right)⋮12\)
\(\Leftrightarrow\left(-3m-33n+12m+36n\right)⋮12\)
\(\Leftrightarrow\left(9m+3n\right)⋮12\)
Đặt A=n(n2-1)(n2+1)=n(n-1)(n+1)(n2+1) chia hết cho 2 và 3
Mà (2;3)=1
=> A chia hết cho 6
Hơn nữa 12n chia hết cho 6
=> điều phải chứng minh
a) Ta lam theo cach quy nap, Dat n=k
\(n^2+11n-10=k^2+11k-10\)khong chia het cho 49
Ta phai chung minh cung dung voi k+1
Ta co: \(\left(k+1\right)^2+11\left(k+1\right)-10=k^2+2k+1+11k+11-10=k^2+13k+2\)
\(=k^2+2\times k\times\frac{13}{2}+\frac{169}{4}-\frac{169}{4}+2=\left(k+\frac{13}{2}\right)^2-40,25\) khong chia het cho 49
=> DPCM
Ta sẽ chứng minh bằng phương pháp quy nạp
Tại x=0x=0 ta có điều phải chứng minh
Giả sử tại x=kx=k thỏa mãn
⇒133|(122k+1+11k+2)⇒133|(122k+1+11k+2)
Ta sẽ chứng minh tại n=k+1n=k+1 cũng thảo mãn
⇒122n+1+11n+2=122k+1.144+11k+2.11=[11(122k+1+11k+2)+133.122k+1]⋮133⇒122n+1+11n+2=122k+1.144+11k+2.11=[11(122k+1+11k+2)+133.122k+1]⋮133
Vậy ta có Q.E.DQ.E.D
Nhát chém mạnh vào quy nạp: ĐỒNG DƯ ĐÂY!
Ta có: 122n+1+11n+2=133(144n+11n)−(112144n+12.11n)122n+1+11n+2=133(144n+11n)−(112144n+12.11n)
Ta chỉ cần chứng minh:112144n+12.11n112144n+12.11n chia hết cho 133.Ta có:
112144n≡11n+2112144n≡11n+2(mod 133)(1)
Ta lại có:12≡−11212≡−112(mod 133)
⇔12.11n≡−11n+2⇔12.11n≡−11n+2(mod 133)(2)
Cộng (1) và (2), ta có đpcm.
Ta sẽ chứng minh bằng phương pháp quy nạp
Tại x=0x=0 ta có điều phải chứng minh
Giả sử tại x=kx=k thỏa mãn
⇒133|(122k+1+11k+2)⇒133|(122k+1+11k+2)
Ta sẽ chứng minh tại n=k+1n=k+1 cũng thảo mãn
⇒122n+1+11n+2=122k+1.144+11k+2.11=[11(122k+1+11k+2)+133.122k+1]⋮133⇒122n+1+11n+2=122k+1.144+11k+2.11=[11(122k+1+11k+2)+133.122k+1]⋮133
Vậy ta có Q.E.DQ.E.D
Nhát chém mạnh vào quy nạp: ĐỒNG DƯ ĐÂY!
Ta có: 122n+1+11n+2=133(144n+11n)−(112144n+12.11n)122n+1+11n+2=133(144n+11n)−(112144n+12.11n)
Ta chỉ cần chứng minh:112144n+12.11n112144n+12.11n chia hết cho 133.Ta có:
112144n≡11n+2112144n≡11n+2(mod 133)(1)
Ta lại có:12≡−11212≡−112(mod 133)
⇔12.11n≡−11n+2⇔12.11n≡−11n+2(mod 133)(2)
Cộng (1) và (2), ta có \(đpcm\)