1.(X+1)×(X+3)–X×(X+2)=7
2.2×X×(3×X+5)–X×(6×X–1)=33
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(2^3\times x-5^2\times x=2\times\left(5^2+2^2\right)-33\)
\(x\times\left(2^3-5^2\right)=2\times\left(25+4\right)-33\)
\(x\times\left(8-25\right)=2\times29-33\)
\(x\times-17=25\)
\(x=-\dfrac{25}{17}\)
2) \(15\div\left(x+2\right)=\left(3^3+3\right)\div1\)
\(15\div\left(x+2\right)=\left(27+3\right)\div1\)
\(15\div\left(x+2\right)=30\div1\)
\(15\div\left(x+2\right)=30\)
\(x+2=\dfrac{1}{2}\)
\(x=-\dfrac{3}{2}\)
3) \(20\div\left(x+1\right)=\left(5^2+1\right)\div13\)
\(20\div\left(x+1\right)=\left(25+1\right)\div13\)
\(20\div\left(x+1\right)=26\div13\)
\(20\div\left(x+1\right)=2\)
\(x+1=20\div2\)
\(x+1=10\)
\(x=9\)
4) \(320\div\left(x-1\right)=\left(5^3-5^2\right)\div4+15\)
\(320\div\left(x-1\right)=\left(125-25\right)\div4+15\)
\(320\div\left(x-1\right)=100\div4+15\)
\(320\div\left(x-1\right)=25+15\)
\(320\div\left(x-1\right)=40\)
\(x-1=8\)
\(x=9\)
5) \(240\div\left(x-5\right)=2^2\times5^2-20\)
\(240\div\left(x-5\right)=4\times25-20\)
\(240\div\left(x-5\right)=100-20\)
\(240\div\left(x-5\right)=80\)
\(x-5=30\)
\(x=35\)
6) \(70\div\left(x-3\right)=\left(3^4-1\right)\div4-10\)
\(70\div\left(x-3\right)=\left(81-1\right)\div4-10\)
\(70\div\left(x-3\right)=80\div4-10\)
\(70\div\left(x-3\right)=20-10\)
\(70\div\left(x-3\right)=10\)
\(x-3=7\)
\(x=10\)
1, \(x=-\dfrac{7}{3}-\dfrac{1}{3}=-\dfrac{8}{3}\)
2, \(x=\dfrac{1}{8}-\dfrac{3}{8}=-\dfrac{2}{8}=-\dfrac{1}{4}\)
3, \(x=\dfrac{6}{5}+\dfrac{4}{5}=\dfrac{10}{5}=2\)
4, \(x=\dfrac{7}{3}-\dfrac{2}{3}=\dfrac{5}{3}\)
5, \(x+\dfrac{7}{3}=\dfrac{5}{3}\Leftrightarrow x=\dfrac{5}{3}-\dfrac{7}{3}=-\dfrac{2}{3}\)
\(=x+\dfrac{1}{3}=\dfrac{-7}{3}\Leftrightarrow x=\dfrac{-8}{3}\)
\(=\dfrac{1}{8}-x=\dfrac{3}{8}\Leftrightarrow x=\dfrac{-1}{4}\)
\(=x-\dfrac{4}{5}=\dfrac{6}{5}\Leftrightarrow x=2\)
\(=\dfrac{2}{3}+x=\dfrac{7}{3}\Leftrightarrow x=\dfrac{5}{3}\)
\(=x-\dfrac{-7}{3}=\dfrac{5}{3}\Leftrightarrow x=\dfrac{-2}{3}\)
1/ \(1+\frac{2}{x-1}+\frac{1}{x+3}=\frac{x^2+2x-7}{x^2+2x-3}\)
ĐKXĐ: \(\hept{\begin{cases}x-1\ne0\\x+3\ne0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-3\end{cases}}\)
<=> \(1+\frac{2\left(x+3\right)+x-1}{\left(x-1\right)\left(x+3\right)}=\frac{x^2+2x-3-5}{x^2+2x-3}\)
<=> \(1+\frac{2x+6+x-1}{x^2+2x-3}=1-\frac{5}{x^2+2x-3}\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=1-1\)
<=> \(\frac{3x+5}{x^2+2x-3}+\frac{5}{x^2+2x-3}=0\)
<=> \(\frac{3x+10}{x^2+2x-3}=0\)
<=> \(3x+10=0\)
<=> \(x=-\frac{10}{3}\)
1: Ta có: \(20-2\left(x+4\right)=4\)
\(\Leftrightarrow2\left(x+4\right)=16\)
\(\Leftrightarrow x+4=8\)
hay x=4
5: Ta có: \(\left(x+1\right)^3=27\)
\(\Leftrightarrow x+1=3\)
hay x=2
\(6-2\left(x-1\right)=4\)
\(\Rightarrow2\left(x-1\right)=6-4\)
\(\Rightarrow2\left(x-1\right)=2\)
\(\Rightarrow x-1=1\)
\(\Rightarrow x=1+1=2\)
________________
\(2\cdot\left(x-2\right)+1=7\)
\(\Rightarrow2\cdot\left(x-2\right)=7-1\)
\(\Rightarrow2\cdot\left(x-2\right)=6\)
\(\Rightarrow x-2=3\)
\(\Rightarrow x=3+2=5\)
_______________
\(\left(2\cdot x-3\right)+4=9\)
\(\Rightarrow2\cdot x-3=5\)
\(\Rightarrow2\cdot x=3+5\)
\(\Rightarrow2\cdot x=8\)
\(\Rightarrow x=\dfrac{8}{2}=4\)
________________
\(\left(3\cdot x-2\right)-1=3\)
\(\Rightarrow3\cdot x-2=3+1\)
\(\Rightarrow3\cdot x-2=4\)
\(\Rightarrow3\cdot x=6\)
\(\Rightarrow x=\dfrac{6}{3}=2\)
a: =>2(x-1)=2
=>x-1=1
=>x=2
b: =>2(x-2)=6
=>x-2=3
=>x=5
c; =>2x-3=5
=>2x=8
=>x=4
d: =>3x-2=4
=>3x=6
=>x=2
e: =>2(6-x)=4
=>6-x=2
=>x=4
f: =>x-2=5
=>x=7
g: =>10-2x=4
=>2x=6
=>x=3
h: =>2x+4=3
=>2x=-1
=>x=-1/2
j: =>x+2=12
=>x=10
l: =>2x+3=3
=>2x=0
=>x=0
\(x+\dfrac{1}{2}=\dfrac{33}{4}\\ \Rightarrow x=\dfrac{33}{4}-\dfrac{1}{2}\\ \Rightarrow x=\dfrac{31}{4}\\ \dfrac{5}{6}-x=\dfrac{1}{3}\\ \Rightarrow x=\dfrac{5}{6}-\dfrac{1}{3}\\ \Rightarrow x=\dfrac{1}{2}\\ x+\dfrac{4}{5}=\dfrac{-2}{3}\\ \Rightarrow x=\dfrac{-2}{3}-\dfrac{4}{5}\\ \Rightarrow x=\dfrac{-22}{15}\)
`@` `\text {Ans}`
`\downarrow`
`1/2*x + 3/5*(x - 2) = 3`
`=> 1/2*x + 3/5*x - 3/5*2 = 3`
`=> 1/2x + 3/5x - 6/5 = 3`
`=> (1/2 + 3/5)x - 6/5 = 3`
`=> 11/10x - 6/5 = 3`
`=> 11/10x = 3 + 6/5`
`=> 11/10x =21/5`
`=> x = 21/5 \div 11/10`
`=> x = 42/11`
Vậy, `x = 42/11`
____
`3 - (1/6 - x)*2/3 = 2/3`
`=> (1/6 - x)*2/3 = 3 - 2/3`
`=> (1/6 - x)*2/3 = 7/3`
`=> 1/6 - x = 7/3 \div 2/3`
`=> 1/6 - x=7/2`
`=> x = 1/6 - 7/2`
`=> x = -10/3`
Vậy, `x = -10/3.`
\(\dfrac{1}{2}\cdot x+\dfrac{3}{5}\left(x-2\right)=3\\ \dfrac{1}{2}\cdot x+\dfrac{3}{5}\cdot x-\dfrac{13}{5}=3\\ \left(\dfrac{1}{2}+\dfrac{3}{5}\right)x-\dfrac{13}{5}=3\\ \dfrac{11}{10}x-\dfrac{13}{5}=3\\ \dfrac{11}{10}x=\dfrac{28}{5}\\ x=\dfrac{28}{5}:\dfrac{11}{10}\\ x=\dfrac{28}{11}\\ 3-\left(\dfrac{1}{6}-x\right)\cdot\dfrac{2}{3}=\dfrac{2}{3}\\ \left(\dfrac{1}{6}-x\right)\cdot\dfrac{2}{3}=3-\dfrac{2}{3}\\ \left(\dfrac{1}{6}-x\right)\cdot\dfrac{2}{3}=\dfrac{7}{3}\\ \dfrac{1}{6}-x=\dfrac{7}{3}:\dfrac{2}{3}\\ \dfrac{1}{6}-x=\dfrac{7}{2}\\ x=\dfrac{1}{6}-\dfrac{7}{2}\\ x=-\dfrac{10}{3}\)
1.
$x(x+2)(x+4)(x+6)+8$
$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$
$=a(a+8)+8$ (đặt $x^2+6x=a$)
$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$
Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$
2.
$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$
$=5-(x^2+5x-6)(x^2+5x+6)$
$=5-[(x^2+5x)^2-6^2]$
$=41-(x^2+5x)^2\leq 41$
Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$
\(\dfrac{5}{x}+1+\dfrac{4}{x}+1=\dfrac{3}{-13}\\ \Rightarrow\dfrac{9}{x}+2=-\dfrac{3}{13}\\ \Rightarrow\dfrac{9}{x}=-\dfrac{59}{13}\\ \Rightarrow x=-\dfrac{207}{59}\)
a. \(\dfrac{5}{x+1}+\dfrac{4}{x+1}=\dfrac{-3}{13}\)
ĐKXĐ: x ≠ -1
⇔ \(\dfrac{65}{13\left(x+1\right)}+\dfrac{52}{13\left(x+1\right)}=\dfrac{-3\left(x+1\right)}{13\left(x+1\right)}\)
⇔ 65 + 52 = -3(x + 1)
⇔ 117 = -3x - 3
⇔ 117 + 3 = -3x
⇔ 120 = -3x
⇔ x = \(\dfrac{120}{-3}=-40\) (TM)
b. -x + 2 + 2x + 3 + x + \(\dfrac{1}{4}\) + 2x + \(\dfrac{1}{6}\) = \(\dfrac{8}{3}\)
⇔ -x + 2x + x + 2x = \(\dfrac{8}{3}-\dfrac{1}{6}-\dfrac{1}{4}-3-2\)
⇔ 4x = -2,75
⇔ x = \(\dfrac{-2,75}{4}=\dfrac{-11}{16}\)
c. \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+2}\) = \(\dfrac{12}{26}\)
⇔ \(\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{2\left(3x+1\right)}=\dfrac{12}{26}\)
⇔ \(\dfrac{312\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) + \(\dfrac{520\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) - \(\dfrac{312\left(2x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
= \(\dfrac{48\left(2x+1\right)\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)
⇔ 312(3x +1) + 520(3x + 1) - 312(2x + 1) = 48(2x + 1)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = (96x + 48)(3x + 1)
⇔ 936x + 312 + 1560x + 520 - 624x - 312 = 288x2 + 96x + 144x + 48
⇔ 936x + 1560x - 624x - 96x - 144x - 288x2 = 48 - 312 - 520 + 312
⇔ 1632x - 288x2 = -472
⇔ -288x2 + 1632x + 472 = 0 (Tự giải tiếp, dùng phương pháp tách hạng tử)
⇔ x = 5,942459684 \(\approx\) 6
\(a;\left(x+1\right)\times\left(x+3\right)-x\times\left(x+2\right)=7\)
\(\Leftrightarrow x^2+4x+3-x^2-2x=7\)
\(\Leftrightarrow2x+3=7\Rightarrow x=\frac{7-3}{2}=2\)
Vậy x=2
\(b;2x\left(3x+5\right)-x\left(6x-1\right)=33\)
\(\Leftrightarrow6x^2+10x-6x^2+x=33\)
\(\Leftrightarrow11x=33\Leftrightarrow x=3\)
Vậy x=3