Tìm giá trị lớn nhất của
A = \(-5x^2-3x+123\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{3}{2x^2+\left(x^2+5x+\frac{25}{4}\right)+\frac{131}{4}}\)
\(=\frac{3}{2x^2+\left(x+\frac{5}{2}\right)^2+\frac{131}{4}}\)
Để Bmax =>\(2x^2+\left(x+\frac{5}{2}\right)^2+\frac{131}{4}\) nhỏ nhất
Mà \(2x^2+\left(x+\frac{5}{2}\right)^2+\frac{131}{4}\ge\frac{131}{4}\forall x\in R\)
dấu "=" xảy ra<=> \(2x^2=0\) và \(\left(x+\frac{5}{2}\right)^2=0\)
\(\Leftrightarrow x=0\) và \(x=\frac{-5}{2}\)
Vậy Bmin = \(\frac{12}{131}\) tại........
hc tốt
a: Ta có: \(B=x^2-4x+6\)
\(=x^2-4x+4+2\)
\(=\left(x-2\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=2
\(A=-3\left(x^2-\dfrac{5}{3}x-2\right)=-3\left(x^2-2\cdot\dfrac{5}{6}x+\dfrac{25}{36}-\dfrac{97}{36}\right)\\ A=-3\left(x-\dfrac{5}{6}\right)^2+\dfrac{97}{12}\le\dfrac{97}{12}\\ A_{max}=\dfrac{97}{12}\Leftrightarrow x=\dfrac{5}{6}\)
\(\left[3\left(x-1\right)^2+6\right]\left(3+6\right)\ge\left[3\left(x-1\right)+6\right]^2\)
\(\Leftrightarrow3x^2-6x+9\ge x+5\)
\(\Rightarrow A\ge x^4-8x^2+2024=\left(x^2-4\right)^2+2008\ge2008\)
Dấu "=" xảy ra khi \(x=2\)
Có phát hiện ra lỗi sai trong bài làm trên ko? :D
\(A=-5x^2-3x+123\)
\(=-5\left(x+\frac{3}{10}\right)+\frac{2469}{20}\le\frac{2469}{20}\)
\(\text{Dấu ''='' xảy ra khi }x+\frac{3}{10}=0\Rightarrow x=-\frac{3}{10}\)