tìm x biết
a,(x-2).(3-x)>0
b,(x-2).(3-x)<0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(2x-3\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=-\dfrac{3}{2}\end{matrix}\right.\)
b) \(x^2-1=0\Rightarrow\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
c) \(x^2-9=0\Rightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
d) \(\Rightarrow\left(2x-4\right)\left(2x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
2) \(\Rightarrow\left(5x-3\right)\left(5x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{5}\\x=-\dfrac{3}{5}\end{matrix}\right.\)
\(b,\Rightarrow\left(x+2\right)\left(x+2-x+3\right)=0\\ \Rightarrow5\left(x+2\right)=0\\ \Rightarrow x=-2\\ c,\Rightarrow2x\left(x^2-2x+1\right)=0\\ \Rightarrow2x\left(x-1\right)^2=0\\ \Rightarrow\left[{}\begin{matrix}2x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\\ d,\Rightarrow\left(x-1-2x-1\right)\left(x-1+2x+1\right)=0\\ \Rightarrow3x\left(-x-2\right)=0\\ \Rightarrow-3x\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}-3x=0\\x+2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
a
\(x+x^2-x^3-x^4=0\\ \Leftrightarrow x\left(1+x\right)-x^3\left(1+x\right)=0\\ \Leftrightarrow\left(1+x\right)\left(x-x^3\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x^2\right)=0\\ \Leftrightarrow\left(1+x\right).x.\left(1-x\right)\left(1+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
b
x^3 chứ: )
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow x^3+3^3+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\\ \Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\\ \Leftrightarrow\left(x+3\right).x.\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=2\end{matrix}\right.\)
Bài 10:
a) (x+2)2 -x(x+3) + 5x = -20
=> x2 + 4x + 4 - x2 - 3x + 5x = -20
=> 6x = -20 + (-4)
=> 6x = -24
=> x = -4
b) 5x3-10x2+5x=0
=>5x(x2-2x+1)=0
=>5x(x-1)2 =0
=> 5x=0 hoặc (x-1)2=0
=>x=0 hoặc x=1
c) (x2 - 1)3 - (x4 + x2 + 1)(x2 - 1) = 0
=> (x2 - 1)[(x2 - 1)2 - (x4 + x2 + 1)] = 0
<=> (x2 - 1)(x4 - 2x2 + 1 - x4 - x2 - 1) = 0
<=> (x2 - 1)(-3x2) = 0
<=> (x2 - 1)=0 hoặc (-3x2) =0
<=> x2=1 hoặc x2=0
<=> x=−1;1 hoặc x=0
d)
(x+1)3−(x−1)3−6(x−1)2=-19
⇔x3+3x2+3x+1−(x3−3x2+3x−1)−6(x2−2x+1)+19=0
⇔x3+3x2+3x+1−x3+3x2−3x+1−6x2+12x−6+19=0
⇔12x+13=0⇔12x+13=0
⇔12x=-13
⇔x=-23/12
Học tốt nhé:333
e: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)
\(\Leftrightarrow x^3+8-x^3-2x=15\)
\(\Leftrightarrow2x=-7\)
hay \(x=-\dfrac{7}{2}\)
f: Ta có: \(x^3-6x^2+12x-19=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-11=0\)
\(\Leftrightarrow\left(x-2\right)^3=11\)
hay \(x=\sqrt[3]{11}+2\)
a) \(\Rightarrow\left(x-1\right)\left(3x+5\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{5}{3}\end{matrix}\right.\)
b) \(\Rightarrow x\left(x-1\right)-2\left(x-1\right)=0\Rightarrow\left(x-1\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Bài 2:
a: =>x=0 hoặc x+3=0
=>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
a/ \(x^2-25=0\)
\(\Rightarrow\left(x+5\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+5=0\Rightarrow x=-5\\x-5=0\Rightarrow x=5\end{matrix}\right.\)
b/ \(x\left(x+7\right)+x+7=0\)
\(x\left(x+7\right)+\left(x+7\right)=0\)
\(\left(x+7\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+7=0\Rightarrow x=-7\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
\(\left(x-2\right)\left(3-x\right)>0\)
\(\Leftrightarrow\hept{\begin{cases}x-2>0\\3-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2< 0\\3-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x>2\\x< 3\end{cases}}\)hoặc \(\hept{\begin{cases}x< 2\\x>3\end{cases}\left(loai\right)}\)
\(\Leftrightarrow2< x< 3\)
Vậy\(2< x< 3\)
\(\left(x-2\right)\left(3-x\right)< 0\)
\(\Leftrightarrow\hept{\begin{cases}x-2< 0\\3-x>0\end{cases}}\)hoặc \(\hept{\begin{cases}x-2>0\\3-x< 0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x< 2\\x>3\end{cases}\left(loai\right)}\)hoặc \(\hept{\begin{cases}x>2\\x< 3\end{cases}}\)
\(\Leftrightarrow2< x< 3\)
Vậy \(2< x< 3\)