Chứng minh rằng biểu thức sau ko phụ thuộc vào x :
P= ( x+2 ) ( 2x^2 -3x +4) - ( x^2 -1) ( 2x +1 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,P=\left(x^2+8x\right)\left(2x-5\right)+x^2\left(-11-2x\right)-8+40x\)
\(=2x^3-5x^2+16x^2-40x-11x^2-2x^3-8+40x\)
\(=\left(2x^3-2x^3\right)+\left(-5x^2+16x^2-11x^2\right)+\left(-40x+40x\right)-8\)
\(=-8\)
\(\Rightarrow \) Giá trị của \(P\) không phụ thuộc vào biến \(x\).
\(b,Q=\left(5x-2\right)\left(x^2+2x\right)-x\left(5x^2+8x-4\right)+26\)
\(=5x^3+10x^2-2x^2-4x-5x^3-8x^2+4x+26\)
\(=\left(5x^3-5x^3\right)+\left(10x^2-2x^2-8x^2\right)+\left(-4x+4x\right)+26\)
\(=26\)
\(\Rightarrow\) Giá trị của \(Q\) không phụ thuộc vào biến \(x\).
\(c,B=3x\left(x+5\right)-\left(3x+18\right)\left(x-1\right)+14\)
\(=3x^2+15x-\left(3x^2-3x+18x-18\right)+14\)
\(=3x^2+15x-3x^2+3x-18x+18+14\)
\(=\left(3x^2-3x^2\right)+\left(15x+3x-18x\right)+\left(18+14\right)\)
\(=32\)
\(\Rightarrow\) Giá trị của \(B\) không phụ thuộc vào biến \(x\).
#\(Toru\)
a: =2x^3-5x^2+16x^2-40x-11x^2-2x^3-8+40x
=-8
b: =5x^3+10x^2-2x^2-4x-5x^3-8x^2+4x+26
=26
c: =3x^2+15x-3x^2+3x-18x+18+14
=32
\(1,\\ A=\left(4x^2+y^2\right)\left(4x^2-y^2\right)=16x^4-y^4\)
Đề sai, biểu thức A ko có m thì sao chứng minh?
\(2,\) Gọi 2 số nguyên lt là \(a;a+1\left(a\in Z\right)\)
Ta có \(a+1-a=1\) là số lẻ (đpcm)
\(3,P=9x^2+24x+16-10x-x^2+16=8x^2+14x+32\)
\(4,Q=x^2-4x+5=\left(x^2-4x+4\right)+1=\left(x-2\right)^2+1\ge1\)
Dấu \("="\Leftrightarrow x-2=0\Leftrightarrow x=2\)
(3x+2)(2x-1)+(3-x)(6x+2)-1>(x-1)
<=>6x^2-3x+4x-2+18x+6-6x^2-2x-1>x-1
<=>17x-3>x-1
<=>17x-x>-1+3
<=>16x>2
<=>x>8
Bài \(3\)
\(A=\left(x-5\right)\left(2x+3\right)-2x\left(x-3\right)+x+7\)
\(=2x^2+3x-10x-15-\left(2x^2-6x\right)+x+7\)
\(=2x^2+3x-10x-15-2x^2+6x+x+7\)
\(=\left(2x^2-2x^2\right)+\left(3x-10x+6x+x\right)+\left(-15+7\right)\)
\(=-8\)
Vậy biểu thức không phụ thuộc vào biến
\(B=4\left(y-6\right)-y^2\left(2+3y\right)+y\left(5y-4\right)+3y^2\)
Đề như này à?
Bài \(4\)
\(a,4a^2-16b^2=4\left(a^2-4b^2\right)=4\left(a-2b\right)\left(a+2b\right)\)
\(b,4x^2-4x+1=\left(2x\right)^2-2.2x.1+1^2=\left(2x+1\right)^2\)
\(c,\) ?
\(d,\left(x-y\right)^2-\left(2x-y\right)^2\\ =\left[\left(x-y\right)-\left(2x-y\right)\right]\left[\left(x-y\right)+\left(2x-y\right)\right]\\ =\left(x-y-2x+y\right)\left(x-y+2x-y\right)\\ =\left(-x\right)\left(3x-2y\right)\)
\(e,8x^3-y^3=\left(2x\right)^3-y^3\\ =\left(2x-y\right)\left(4x^2+2xy+y^2\right)\)
\(i,3x+6y+\left(x+2y\right)\\ =3\left(x+2y\right)+\left(x+2y\right)\\ =4\left(x+2y\right)\)
\(j,ax-ay-x+y=\left(ãx-ay\right)-\left(x-y\right)\\ =a\left(x-y\right)-\left(x-y\right)=\left(x-y\right)\left(a-1\right)\)
`k,` `y` hay `y^2` ạ? vì nó mới phân tích được nhân tử.
(3x+2)(2x-1)+(3-x)(6x+2)-1 > (x-1)
<=> 6x2-3x+4x-2 + 18x+6-6x2-2x-1>(x-1)
<=> 17x-3>x-1
<=> 17x-x>-1+3
<=> 16x>2
<=> x>8
\(P=\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\\ P=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\\ P=9\)
Vậy P k phụ thuộc vào x
\(P=\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)
\(P=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)
\(P=9\)
Vậy biểu thức P không phụ thuộc vào x