Giaỉ PT
\(\left(x^2-9\right)^2=12x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Điều kiện x>=-2; y>=0; x>=y-3
Ta xét PT thứ nhất
Đặt √(x+2) = a; √y = b (a,b>=0)
Thì PT thành a(a2 - b2 + 1) - b = 0
<=> a3 - ab2 + a - b = 0
<=> a(a - b)(a + b) + (a -b) =0
<=> (a - b)(a2 + ab + 1)=0
Đễ thấy a2 + ab + 1 >0
Nên a =b
Thế vào ta được y = x + 2
Thay cái này vào PT còn lại là xong
\(\hept{\begin{cases}\sqrt{x+2}\left(x-y+3\right)=\sqrt{y}\left(1\right)\\x^2+\left(x+3\right)\left(2x-y+5\right)=x+16\left(2\right)\end{cases}}\)
DKXD :x>=-2; y>=0
Đặt\(\hept{\begin{cases}\sqrt{x+2=a}\\x-y+3=b\end{cases}\left(a\ge0\right)}\)
Pt 1 có dạng \(ab=\sqrt{a^2-b+1}\Leftrightarrow a^2b^2=a^2-b+1\Leftrightarrow a^2\left(b-1\right)\left(b+1\right)+b-1=0\)
\(\Leftrightarrow\left(b-1\right)\left(a^2b+a^2+1\right)=0\)
+> b-1=0\(\Rightarrow b=1\Leftrightarrow x-y+3=1\)
\(\)Khi đó pt (2) \(\Leftrightarrow x^2+\left(x+3\right)\left(x+2+1\right)=x+16\Leftrightarrow x^2+\left(x+3\right)^2=x+16\)
\(\Leftrightarrow x^2+x^2+6x+9=x+16\Leftrightarrow2x^2+5x-7=0\)
Có : 2+5-7=0
Nên pt trên có 2 no \(x_1=1\left(tm\right);x_2=-\frac{7}{2}\left(ktm\right)\)
\(\Rightarrow1-y+3=1\Leftrightarrow y=3\left(tm\right)\)
+>\(a^2b+a^2+1=0\Leftrightarrow\left(x+2\right)\left(x+3-y\right)+x+3=0\)(3)
Đặt \(x+3=m\). Pt(3) có dạng \(\left(m-1\right)\left(m-y\right)+m=0\Leftrightarrow m^2-m-my+y+m=0\Leftrightarrow m^2=y\left(m-1\right)\)
Nếu \(m-1=0\Leftrightarrow x+3-1=0\Leftrightarrow x=-2\left(tm\right)\Rightarrow y=0\left(tm\right)\)
Nhưng k tm pt 2
\(\Rightarrow m-1\ne0\Rightarrow y=\frac{m^2}{m-1}=\frac{\left(x+3\right)^2}{x+2}\)
Thay vào pt (2) ta được \(x^2+\left(x+3\right)\left(2x+5-\frac{\left(x+3\right)^2}{x+2}\right)=x+16\)
ĐẾn đây tự nhân chéo chuển vế ta được \(2x^3+7x^2-8x-29=0\)
a, \(x^2-4x+4x-5\ge x^2+6\Leftrightarrow-5\ge6\)
vô lí bpt vô nghiệm
b, \(9x^2-6x+1-9x^2+9< 5x-2\Leftrightarrow-6x+10< 5x-2\)
\(\Leftrightarrow-11x< -12\Leftrightarrow x>\dfrac{12}{11}\)
\(\left(x^2+2x\right)^2-6x^2+12x+9=0\Leftrightarrow x^4+4x^3+4x^2-6x^2+12x+9=0\\ \Leftrightarrow x^4+4x^3-2x^2+12x+9=0\Leftrightarrow x^2+4x-2+\frac{12}{x}+\frac{9}{x^2}=0\\ \Leftrightarrow\left(x^2+\frac{9}{x^2}\right)+4\left(x+\frac{3}{x}\right)-2=0\)
Đặt \(k=x+\frac{3}{x}\Rightarrow x^2+\frac{9}{x^2}=k^2-6\)
Ta đc \(k^2-6+4k-2=0\Leftrightarrow k^2+4k-8=0\)
\(\left(x^2+2x\right)^2\)\(-6x^2\)\(+12x+9\)=0
⇔\(\left(x^2\right)^2\)\(+2.2x.x^2\)+\(2x^2\)-6x2+12x+9=0
⇔ x4+ 4x3+2x2-6x2+12x+9=0
⇔ x2+4x3-4x2 +12x=-9
⇔x2+ 4x(x-x+3)=-9
⇔x2+12x=-9
⇔x(x+12)=-9
⇔ {x=-9 hoặc x+12=-9}
⇔ {x=-9 hoặc x=-21}
S={-9;-21}
Làm cho bạn 1 con thôi dài quá trôi hết màn hình:
c) có vẻ khó nhất (con khác tương tự)
đặt 2x+2=t=> x+1=t/2
\(\left(t-1\right).\left(\frac{t}{2}\right)^{^2}.\left(t+1\right)=18\Leftrightarrow\left(t^2-1\right)t^2=4.18\)
\(t^4-t^2=4.18\Leftrightarrow y^2-2.\frac{1}{2}y+\frac{1}{4}=4.18+\frac{1}{4}=\frac{16.18+1}{4}=\left(\frac{17}{2}\right)^2\)
<=> \(\left(y-\frac{1}{2}\right)^{^2}=\left(\frac{17}{2}\right)^2\Rightarrow\left[\begin{matrix}y=\frac{1}{2}-\frac{17}{2}=-8\\y=\frac{1}{2}+\frac{17}{2}=9\end{matrix}\right.\Rightarrow\left[\begin{matrix}2x+2=-8\Rightarrow x=-5\\2x+2=9\Rightarrow x=\frac{7}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left(x+1\right)\sqrt{3x+1}-5\sqrt{2x-1}+\sqrt{2x-1}\cdot\sqrt{3x+1}-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\sqrt{3x+1}-5\right)+\sqrt{2x-1}\cdot\left(\sqrt{3x+1}-5\right)=0\)
\(\Leftrightarrow\left(x+1+\sqrt{2x-1}\right)\left(\sqrt{3x+1}-5\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1+\sqrt{2x-1}\right)=0\\\sqrt{3x+1}-5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}vônghiệm\\x=8\end{cases}}\)
Đk : \(x\ge\frac{1}{2}\)
Đặt \(\sqrt{2x-1}=a;\sqrt{3x+1}=b\)\(a\ge0;b>0\) thì x+1 = b2-a2-1
PT<=> (b^2-a^2-1)b -5a + ab = 5(b^2-a^2-1)
<=> (b^2-a^2-1)(b-5)+a(b-5)=0
<=> (b^2-a^2-1+a)(b-5)=0
<=>\(\orbr{\begin{cases}b^2-a^2-1+a=0\\b-5=0\end{cases}}\)
* b^2-a^2-1+a= 0 <=>x+2 -1 + \(\sqrt{2x-1}\)=0<=> x+1+\(\sqrt{2x-1}\)=0
Mặt khác : x\(\ge\)1/2 >0 ; \(\sqrt{2x-1}\ge0\) nên x+1+\(\sqrt{2x-1}>0\)=> pt vô no
*b-5 = 0 <=> b=5 <=> x= 8 tm
Vậy pt có no duy nhất là x=8