K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
3 tháng 7 2019

C1: \(\left(a+b\right)^2-\left(a-b\right)^2\)

\(=a^2+2ab+b^2-a^2+2ab-b^2=4ab\) (đpcm)

C2: \(\left(2x+3\right)^2-4\left(x-1\right)\left(x+1\right)=49\)

\(\Leftrightarrow4x^2+12x+9-4x^2+4=49\)

\(\Leftrightarrow12x+13=49\)

\(\Leftrightarrow12x=36\)

\(\Leftrightarrow x=3\)

Vậy x = 3.

3 tháng 7 2019

Câu 1 :

\(\left(a+b\right)^2-\left(a-b\right)^2\)

= \(\left(a^2+2ab+b^2\right)-\left(a^2-2ab+b^2\right)\)

= \(a^2+2ab+b^2-a^2+2ab-b^2\)

= \(\left(a^2-a^2\right)+\left(2ab+2ab\right)+\left(b^2-b^2\right)\)

= \(4ab\)

Vậy................(đpcm)

14 tháng 9 2017

bai dai dong qua

14 tháng 9 2017

a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0

\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)

\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)

\(-5x-8=0\)

\(x=-\frac{8}{5}\)

Mai mik làm mấy bài kia sau

1 tháng 12 2017

C1

 Câu trả lời hay nhất:  Bài này có nhiều cách giải khác nhau: 
C1: Nhận vào: 5x^2-16x+3=0, giải phương trình bậc 2 => x=3, x=1/5 
C2: Đặt nhân tử chung: 
5x(x-3)-(x-3)=0 <=> (x-3)(5x-1)=0 <=> x-3=0 hoặc 5x-1=0 
<=> x=3, x=1/5

C2

1 tháng 12 2017

Mình cần câu trả lời cụ thể hơn

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4ab) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 86. Chứng minh các bất đẳng thức:a) (a...
Đọc tiếp

1. Cho a + b = 1. Tìm giá trị nhỏ nhất của biểu thức : M = a3 + b3.

2. Cho a3 + b3 = 2. Tìm giá trị lớn nhất của biểu thức : N = a + b.

3. Cho a, b, c là các số dương. Chứng minh: a3 + b3 + abc ≥ ab(a + b + c)

4. Tìm liên hệ giữa các số a và b biết rằng: a b a b   

5. a) Chứng minh bất đẳng thức (a + 1)2 ≥ 4a

b) Cho a, b, c > 0 và abc = 1. Chứng minh: (a + 1)(b + 1)(c + 1) ≥ 8

6. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2) b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

7. Tìm các giá trị của x sao cho:

a) | 2x – 3 | = | 1 – x | b) x2 – 4x ≤ 5 c) 2x(2x – 1) ≤ 2x – 1.

8. Tìm các số a, b, c, d biết rằng : a2 + b2 + c2 + d2 = a(b + c + d)

9. Cho biểu thức M = a2 + ab + b2 – 3a – 3b + 2001. Với giá trị nào của avà b thì M đạt giá trị nhỏ nhất ? Tìm giá trị nhỏ nhất đó.

10. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. CMR giá trị nhỏ nhất của P bằng 0.

11. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau :

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

3
23 tháng 10 2016

bài 5 nhé:

a) (a+1)2>=4a

<=>a2+2a+1>=4a

<=>a2-2a+1.>=0

<=>(a-1)2>=0 (luôn đúng)

vậy......

b) áp dụng bất dẳng thức cô si cho 2 số dương 1 và a ta có:

a+1>=\(2\sqrt{a}\)

tương tự ta có:

b+1>=\(2\sqrt{b}\)

c+1>=\(2\sqrt{c}\)

nhân vế với vế ta có:

(a+1)(b+1)(c+1)>=\(2\sqrt{a}.2\sqrt{b}.2\sqrt{c}\)

<=>(a+1)(b+1)(c+1)>=\(8\sqrt{abc}\)

<=>(a+)(b+1)(c+1)>=8 (vì abc=1)

vậy....

23 tháng 10 2016

bạn nên viết ra từng câu

Chứ để như thế này khó nhìn lắm

15 tháng 8 2018

a) \(36x^2-49=0\)

\(\Leftrightarrow\left(6x\right)^2-7^2=0\)

\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)

\(TH_1:6x-7=0\) \(TH_2:6x+7=0\)

\(\Leftrightarrow6x=7\) \(\Leftrightarrow6x=-7\)

\(\Leftrightarrow x=\dfrac{7}{6}\) \(\Leftrightarrow x=-\dfrac{7}{6}\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{7}{6};-\dfrac{7}{6}\right\}\)

16 tháng 8 2018

Bài 2

a) 36x2-49=0

⇔ (6x)2-49=0

⇔(6x-7).(6x+7)=0

TH1: 6x-7=0 TH2: 6x+7=0

⇔6x=7 ⇔6x=-7

⇔x=7/6 ⇔x=-7/6

12 tháng 6 2017

a/ \(x^2+y^2=x^2+y^2+2xy-2xy =\left(x+y\right)^2-2xy\)

b/ mình không chắc nữa

bài 3

a/ \(9x^2-49=0 \Leftrightarrow x^2=\frac{49}{9} \Leftrightarrow\orbr{\begin{cases}x=\frac{7}{3}\\x=-\frac{7}{3}\end{cases}}\)

b/ \(\left(x+3\right)\left(x^2-3x+9\right)-x\left(x+1\right)\left(x-1\right)-27=0 \Leftrightarrow x^3+27-x\left(x^2-1\right)-27=0\)

\(\Leftrightarrow x^3-x^3+x=0\Leftrightarrow x=0\)

c/\(\left(x-1\right)\left(x+2\right)-x-2=0 \Leftrightarrow \left(x-1\right)\left(x+2\right)-\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-1\right)^2=0\Leftrightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)

d/ \(x\left(3x+2\right)+\left(x+1\right)^2-\left(2x-5\right)\left(2x+5\right)=0\)

\(\Leftrightarrow3x^2+2x+x^2+2x+1-4x^2+25=0\)

\(\Leftrightarrow4x+25=0 \Leftrightarrow x=\frac{-25}{4}\)

e/ mình lười qá ko viết đề đâu 

\(\Leftrightarrow4x^2-7x-2-4x^2+4x+3=7\)

\(\Leftrightarrow-3x+1=7 \Leftrightarrow x=-2\)

có gì sai bn sửa lại nha