Bài 1; Tìm m,n nguyên dương biết:
a,\(^{2^m}\)+ \(^{2^n}\)=\(^{2^{m+n}}\)
b,\(^{2^m}\)- \(^{2^n}\)=256
Bài 2 Tìm x biết:
\(\left(x-7\right)^{x+1}\)- \(^{\left(x-7\right)^{x+11}}\)=0
Bài 3 Tìm x,y biết:
\(|x-2011y|\)+ \(^{\left(y-1\right)^{2012}}\)=0
Bài 4 Tìm x biết:
a,\(|x-1\le4|\)
b,\(|x-2019|\ge2020\)
mn giúp mk vs,mk cần gấp
a) \(2^m+2^n=2^{m+n}\)
\(\Leftrightarrow2^m+2^n=2^m.2^n\)
\(\Leftrightarrow2^m.2^n-2^m-2^n=0\)
\(\Leftrightarrow2^m\left(2^n-1\right)-\left(2^n-1\right)=1\)
\(\Leftrightarrow\left(2^m-1\right)\left(2^n-1\right)=1=1.1=\left(-1\right).\left(-1\right)\)
\(TH1:\hept{\begin{cases}2^m-1=1\\2^n-1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}m=1\\n=1\end{cases}}\)
\(TH1:\hept{\begin{cases}2^m-1=-1\\2^n-1=-1\end{cases}}\Leftrightarrow m,n\in\left\{\varnothing\right\}\)
Vậy m = n = 1
\(2^m-2^n=256\)
\(\Leftrightarrow2^n\left(2^{m-n}-1\right)=2^8\)
\(TH1:m-n< 2\)\(\Rightarrow\hept{\begin{cases}n=8\\m=9\end{cases}}\)
\(TH2:m-n\ge2\)
VP chứa toàn thừa số nguyên tố 2 nên VP chẵn.
*Xét VT: \(2^{m-n}-1\)lẻ vì \(m-n\ge2\)
Suy ra : VT lẻ, VP chẵn ( vô lí )
Vậy m = 9 , n = 8