Cho biết a - b = -1, ab= 2. Tính giá trị biểu thức sau
M= a^2 + b^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = (x - 5)(x² + 5x + 25) - (x - 2)(x + 2) + x(x² + x + 4)
= x³ - 125 - x² + 4 + x³ + x² + 4x
= (x³ + x³) + (-x² + x²) + 4x + (-125 + 4)
= 2x³ + 4x - 121
b) Tại x = -2 ta có:
A = 2.(-2)³ + 4.(-2) - 121
= 2.(-8) - 8 - 121
= -16 - 129
= -145
c) x² - 1 = 0
x² = 1
x = -1; x = 1
*) Tại x = -1 ta có:
A = 2.(-1)³ + 4.(-1) - 121
= 2.(-1) - 4 - 121
= -2 - 125
= -127
*) Tại x = 1 ta có:
A = 2.1³ + 4.1 - 121
= 2.1 + 4 - 121
= 2 - 117
= -115
a) \(a^2+2a+b^2-2b-2ab=\left(a-b\right)^2+2\left(a-b\right)\)
Thay a-b=7 vào trên ta được:
7^2+2*7=63
P=3a-2b\2a+5 + 3b-a\b-5
=2a+a-2b\2a-5 + -a+2b+b\b-5
=2a+(a-2b)\2a-5 + -(a-2b)+b
=2a+5\2a-5 + -5+b\b-5
=-(2a-5)\(2a-5) + (b-5)\(b-5)
=-1+1=0
\(M=a^2+b^2\)
\(=a^2-2ab+b^2+2ab\)
\(=\left(a-b\right)^2+2ab\)
Thay \(a-b=-1\)và \(ab=2\)vào M , ta có :
\(M=\left(-1\right)^2+2.2=1+4=5\)
Vậy \(M=5\)tại \(a-b=-1\)và \(ab=2\)