K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2020

Mk chỉ tìm thấy trường hợp thỏa mãn này mà có \(a,b,c,d< 100\)

\(53^2+83^2=17^2+97^2\) (GTNN của \(a+b+c+d\) là \(53+83+17+97=250\))

\(23^2+71^2=43^2+61^2\) (GTNN của \(a+b+c+d\) là \(23+71+43+61=198\))

\(\Rightarrow GTNN\) của \(a+b+c+d=198\)

Mk sẽ cố gắng tìm thêm và tìm ra cách giải vì cả kq và cách giải mk đều ko chắc. Bạn có đáp án ko?

 
4 tháng 3 2020

Mình lạc mất đáp án rùi :(((

các bạn làm ơn giúp mik

27 tháng 5 2017

theo cong thuc  x1 x2

18 tháng 2 2020

Ta có: \(a^2+b^2+c^2=d^2+e^2+g^2\Leftrightarrow a^2+b^2+c^2+d^2+e^2+g^2=2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2+g^2⋮2\left(1\right)\)

Lại có \(a^2-a=a\left(a-1\right)⋮2\)

Tương tự \(b^2-b,c^2-c,d^2-d,e^2-e,g^2-g⋮2\)

\(\Leftrightarrow\left(a^2+b^2+c^2+d^2+e^2+g^2\right)-\left(a+b+c+d+e+g\right)⋮2\left(2\right)\)

Từ (1) và (2) \(\Leftrightarrow a+b+c+d+e+g⋮2\)

3 tháng 7 2017

3. 1998=a+b+c (a,b,c\(\in N\))

Xét a^3+b^3+c^3 - (a+b+c)=a(a-a)(a+1)+b(b-1)(b+1)+c(c-1)(c+1)

mà n(n-1)(n+1) luôn chia hết cho 6 với mọi số tự nhiên n

=>a^3+b^3+c^3 chia hết cho 6 (a+b+c chia hết cho 6)