x^4+4x^3+12x+16=0
TÁch nhân tử
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) `x^4+2x^3-4x-4`
`=(x^4-4)+(2x^3-4x)`
`=(x^2-2)(x^2+2)+2x(x^2-2)`
`=(x^2-2)(x^2+2+2x)`
b) `x^3-4x^2+12x-27`
`=(x^3-27)-(4x^2-12x)`
`=(x-3)(x^2+3x+9)-4x(x-3)`
`=(x-3)(x^2+3x+9-4x)`
`=(x-3)(x^2-x+9)`
c) `xy-4y-5x+20`
`=y(x-4)-5(x-4)`
`=(y-5)(x-4)`
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4-4\right)+2x^3-4x\)
\(=\left(x^2-2\right)\left(x^2+2\right)+2x\left(x^2-2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
b) Ta có: \(x^3-4x^2+12x-27\)
\(=\left(x-3\right)\left(x^2+3x+9\right)-4x\cdot\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2-x+9\right)\)
c) Ta có: \(xy-4y-5x+20\)
\(=y\left(x-4\right)-5\left(x-4\right)\)
\(=\left(x-4\right)\left(y-5\right)\)
a) x 2 – x – 12 b) x 3 – 64.
c) m 3 n 3 – m 2 n + 5 mn 2 – 5 d) 16 x 4 – 1.
\(x^4+3x^3+12x-16\)
\(=x^4+4x^3+4x^2+16x-x^3-4x^2-4x-16\)
\(=x\left(x^3+4x^2+4x+16\right)-\left(x^3+4x^2+4x+16\right)\)
\(=\left(x-1\right)\left(x^3+4x^2+4x+16\right)\)
\(=\left(x-1\right)\left[x^2\left(x+4\right)+4\left(x+4\right)\right]\)
\(=\left(x-1\right)\left(x+4\right)\left(x^2+4\right)\)
x4 - 9x3 + 28x2 - 36x + 16
Thử với x = 4 ta có :
44 - 9.43 + 28.42 - 36.4 + 16 = 0
Vậy 4 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì đa thức trên chia hết cho x - 4
Thực hiện phép chia đa thức cho x - 4 ta được x3 - 5x2 + 8x - 4
Vậy ta phân tích được ( x - 4 )( x3 - 5x2 + 8x - 4 )
Tiếp tục : Thử x = 2 với x3 - 5x2 + 8x - 4
Ta có : 23 - 5.22 + 8.2 - 4 = 0
Vậy 2 là nghiệm của đa thức . Theo hệ quả của định lí Bézout thì x3 - 5x2 + 8x - 4 chia hết cho x - 2
Thực hiện phép chia x3 - 5x2 + 8x - 4 cho x - 2 ta được x2 - 3x + 2
Vậy ta phân tích được ( x - 4 )( x - 2 )( x2 - 3x + 2 )
x2 - 3x + 2 = x2 - x - 2x + 2
= x( x - 1 ) - 2( x - 1 )
= ( x - 2 )( x - 1 )
Vậy : x4 - 9x3 + 28x2 - 36x + 16 = ( x - 4 )( x - 2 )( x - 2 )( x - 1 ) = ( x - 4 )( x - 2 )2( x - 1 )
a. \(x^4-9x^3+28x^2-36x+16\)
\(=x^4-8x^3+20x^2-16x-x^3+8x^2-20x+16\)
\(=x\left(x^3-8x^2+20x-16\right)-\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-8x^2+20x-16\right)\)
\(=\left(x-1\right)\left(x^3-6x^2+8x-2x^2+12x-16\right)\)
\(=\left(x-1\right)\left[x\left(x^2-6x+8\right)-2\left(x^2-6x+8\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-6x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left(x^2-2x-4x+8\right)\)
\(=\left(x-1\right)\left(x-2\right)\left[x\left(x-2\right)-4\left(x-2\right)\right]\)
\(=\left(x-1\right)\left(x-2\right)^2\left(x-4\right)\)
a: \(x^2+12x+36=0\)
=>\(x^2+2\cdot x\cdot6+6^2=0\)
=>\(\left(x+6\right)^2=0\)
=>x+6=0
=>x=-6
b: \(4x^2-4x+1=0\)
=>\(\left(2x\right)^2-2\cdot2x\cdot1+1^2=0\)
=>\(\left(2x-1\right)^2=0\)
=>2x-1=0
=>2x=1
=>x=1/2
c: \(x^3+6x^2+12x+8=0\)
=>\(x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3=0\)
=>\(\left(x+2\right)^3=0\)
=>x+2=0
=>x=-2
a)\(4x^2-4x+4=0\Leftrightarrow\left(2x-1\right)^2+3\) (đến đây hết pt dc rùi)
b)\(x^3-27=\left(x-3\right)\left(x^2+3x+9\right)\)
c)\(x^3-4x^2+3x=x^3-x^2-3x^2+3x\)
=\(x^2\left(x-1\right)-3x\left(x-1\right)\)
=\(x\left(x-3\right)\left(x-1\right)\)
d)\(4x^2-12x+3=\left(2x-3\right)^2-6\)
=\(\left(2x-3\right)^2-\sqrt{6^2}\)
=\(\left(2x-3-\sqrt{6}\right)\left(2x-3+\sqrt{6}\right)\)
\(a,4x^2-4x+4=4\left(x^2-x+1\right)\)
\(b,x^3-27=x^3-3^3=\left(x-3\right)\left(x^2+3x+9\right)\)
\(c,x^3-4x^2+3x=x\left(x^2-4x+3\right)\)
\(=x\left[\left(x^2-x\right)-\left(3x-3\right)\right]\)
\(=x\left[x\left(x-1\right)-3\left(x-1\right)\right]\)
\(=x\left(x-1\right)\left(x-3\right)\)
\(d,4x^2-12x+3=4\left(x^2-3x+\frac{3}{4}\right)\)
\(=4\left(x^2-2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}+\frac{3}{4}\right)\)
\(=4\left[\left(x-\frac{3}{2}\right)^2-\frac{3}{2}\right]\)
\(=4\left[\left(x-\frac{3}{2}\right)^2-\left(\frac{\sqrt{3}}{\sqrt{2}}\right)^2\right]\)
\(=4\left(x-\frac{3}{2}-\frac{\sqrt{3}}{\sqrt{2}}\right)\left(x-\frac{3}{2}+\frac{\sqrt{3}}{\sqrt{2}}\right)\)
\(=4\left(x-\frac{3+\sqrt{6}}{2}\right)\left(x-\frac{3-\sqrt{6}}{2}\right)\)
P/s: Dương: câu d t k chắc nx, sai thì thông cảm :)) -Huyền Nhi-
\(x^2+2x-8\)
\(=x^2+4x-2x-8\)
\(=x^2\left(x+4\right)-2\left(x+4\right)\)
\(=\left(x^2-2\right)\left(x+4\right)\)
\(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)\)
\(=\left(x+3\right)\left(x+2\right)\)
\(4x^2-12x+8\)
\(=4x^2-4x-8x+8\)
\(=4x\left(x-1\right)-8\left(x-1\right)\)
\(=\left(4x-8\right)\left(x-1\right)\)
\(x^2-xy-\dfrac{3}{4}y^2\)
\(=x^2-\dfrac{3}{2}xy+\dfrac{1}{2}xy-\dfrac{3}{4}y^2\)
\(=x\left(x-\dfrac{3}{2}y\right)+\dfrac{1}{2}y\left(x-\dfrac{3}{2}y\right)\)
\(=\left(x+\dfrac{1}{2}y\right)\left(x-\dfrac{3}{2}y\right)\)
a) \(=\left(x-2\right)^2\)
b) \(=\left(2x+1\right)^2\)
c) \(=\left(4x-3y\right)\left(4x+3y\right)\)
d) \(=\left(4-x-3\right)\left(4+x+3\right)=\left(1-x\right)\left(x+7\right)\)
e) \(=\left(2x-3x+1\right)\left(2x+3x-1\right)=\left(1-x\right)\left(5x-1\right)\)
f) \(=\left(x-y\right)\left(x^2+xy+y^2\right)\)
g) \(=\left(x+3\right)\left(x^2-3x+9\right)\)
h) \(=\left(x+2\right)^3\)
i) \(=\left(1-x\right)^3\)