K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 6 2019

Đặt \(t=2x^2+3x-1\) thì pt trở thành :

\(t\left(t-5\right)=-4\) \(\Leftrightarrow t^2-5t+4=0\)

\(\Leftrightarrow t^2-t-4t+4=0\)

\(\Leftrightarrow\left(t-1\right)\left(t-4\right)=0\) \(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-1=1\\2x^2+3x-1=4\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-1\right)\left(x+2\right)=0\\\left(2x+5\right)\left(x-1\right)=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{2}\\x=-2\\x=-\frac{5}{2}\\x=1\end{matrix}\right.\) ( TM )

NV
27 tháng 6 2019

\(\Leftrightarrow\left(2x^2+3x-1\right)^2-5\left(2x^2+3x-1\right)+4=0\)

\(\Leftrightarrow\left(2x^2+3x-1-1\right)\left(2x^2+3x-1-4\right)=0\)

\(\Leftrightarrow\left(2x^2+3x-2\right)\left(2x^2+3x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2+3x-2=0\\2x^2+3x-5=0\end{matrix}\right.\)

Bấm máy...

13 tháng 2 2020

câu a bài 1:(2x+1)(3x-2)=(5x-8)(2x+1)

<=>(2x+1)(3x-2)-(5x-8)(2x+1)=0

<=>(2x+1)(3x-2-5x+8)=0

<=>(2x+1)(6-2x)=0

bước sau tự làm nốt nha !

câu b:gợi ý: tách 4x^2-1thành (2x-1)(2x+1) rồi làm như câu a

13 tháng 2 2020

Đặng Thị Vân Anh tuy mk k cần nx nhưng dù s cx cảm ơn bn nha :)

NV
29 tháng 6 2019

ĐKXĐ: ...

\(\Leftrightarrow\frac{2x}{3x^2-4x+1}-\frac{7x}{3x^2+2x+1}=6\)

\(\Leftrightarrow\frac{2}{3x-4+\frac{1}{x}}-\frac{7}{3x+2+\frac{1}{x}}=6\)

Đặt \(3x-4+\frac{1}{x}=a\)

\(\frac{2}{a}-\frac{7}{a+6}=6\)

\(\Leftrightarrow2\left(a+6\right)-7a=6a\left(a+6\right)\)

\(\Leftrightarrow6a^2+41a-12=0\)

Nghiệm xấu, bạn coi lại đề

23 tháng 10 2019

GPT

\(\frac{3}{3x^2-4x+1}+\frac{13}{3x^2+2x+1}=\frac{6}{x}\)

26 tháng 4 2020

\(\frac{2x-8}{6}-\frac{3x+1}{4}=\frac{9x-2}{8}+\frac{3x-1}{12}\)

\(\Leftrightarrow\frac{4\left(2x-8\right)}{24}-\frac{6\left(3x+1\right)}{24}=\frac{3\left(9x-2\right)}{24}+\frac{2\left(3x-1\right)}{24}\)

\(\Leftrightarrow\frac{8x-32}{24}-\frac{18x+6}{24}=\frac{27x-6}{24}+\frac{6x-2}{24}\)

\(\Leftrightarrow8x-32-18x-6=27x-6+6x-2\)

\(\Leftrightarrow8x-18x-27x-6x=-6-2+32+6\)

\(\Leftrightarrow-42x=30\)

\(\Leftrightarrow x=-\frac{5}{7}\)

13 tháng 2 2022

\(\left(dk:x\ne-\dfrac{2}{3};x\ne-1\right)pt\Leftrightarrow\dfrac{2x}{3x^2-x+2}-\dfrac{7x-3x^2-5x-2}{3x^2+5x+2}=0\Leftrightarrow\dfrac{2x}{3x^2-x+2}-\dfrac{3x^2+12x+2}{3x^2+5x+2}=0\left(1\right)\)

\(x=0\) \(không\) \(là\) \(nghiệm\left(1\right)\)

\(x\ne0\Rightarrow\left(1\right)\Leftrightarrow\dfrac{2}{3x-1+\dfrac{2}{x}}-\dfrac{3x+12+\dfrac{2}{x}}{3x+5+\dfrac{2}{x}}=0\)

\(đặt:3x+\dfrac{2}{x}=t\) \(do:x\ne-\dfrac{2}{3};x\ne-1;\Rightarrow t\ne-5\)

\(x>0\Rightarrow t\ge2\sqrt{3.2}=2\sqrt{6}\)

\(x< 0\Rightarrow-t\ge2\sqrt{6}\Rightarrow t\le-2\sqrt{6}\Rightarrow\left[{}\begin{matrix}t\ne-5;t\le-2\sqrt{6}\\t\ge2\sqrt{6}\end{matrix}\right.\)

\(\Rightarrow\dfrac{2}{t-1}-\dfrac{t+12}{t+5}=0\Rightarrow2\left(t+5\right)-\left(t+12\right)\left(t-1\right)=0\Leftrightarrow\left[{}\begin{matrix}t=-11\left(tm\right)\\t=2\left(ktm\right)\end{matrix}\right.\)

\(t=-11=3x+\dfrac{2}{x}\Leftrightarrow3x^2+2=-11x\Leftrightarrow3x^2+11x+2=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-11+\sqrt{97}}{6}\left(tm\right)\\x=\dfrac{-11-\sqrt{97}}{6}\left(tm\right)\end{matrix}\right.\)

13 tháng 2 2022

bài nó dàiiiiiiii , khôg hiểu chỗ nèo hỏi lại mình hen

\(\dfrac{2x}{3x^2-x+2}-\dfrac{7x}{3x^2+5x+2}=1\)

\(\Leftrightarrow\left(\dfrac{2x}{3x^2-x+2}-\dfrac{7x}{\left(3x+2\right)\left(x+1\right)}\right)=1\)

\(\Leftrightarrow\dfrac{2x\left(3x+2\right)\left(x+1\right)-\left(7x.\left(3x^2-x+2\right)\right)}{\left(3x^2-x+2\right).\left(3x+2\right)\left(x+1\right)}=\dfrac{-15x^3+17x^2-10x}{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}\)

 

\(\Leftrightarrow\dfrac{-15x^3+17^2-10x }{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}-1=0\)

rồi quy đồng tùm lum từa lưa nữa được như này:

\(\Leftrightarrow\dfrac{-9x^4-27x^3+10x^2-18x-4}{\left(3x^2-x+2\right)\left(3x+2\right)\left(x+1\right)}=0\)

\(\Leftrightarrow-9x^4-27x^3+10x^2-18x-4=0\)

\(\Leftrightarrow x^2+\dfrac{5}{3}.x+\dfrac{25}{26}=0\)

\(\Leftrightarrow x+\left(\dfrac{5}{6}\right)^2=\dfrac{1}{36}\)

Sử dụng công thức bậc 2 hen:

\(\Leftrightarrow x=\dfrac{-5\pm\sqrt{1}}{6}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{-5+\sqrt{1}}{6}\\x_2=\dfrac{-5-\sqrt{1}}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{2}{3}\\x_2=-1\end{matrix}\right.\)

 

NV
29 tháng 6 2019

Nhận thấy \(x=0\) không phải nghiệm, chia cả tử và mẫu vế trái cho x:

\(\frac{2}{3x-5+\frac{2}{x}}+\frac{13}{3x+1+\frac{2}{x}}=6\)

Đặt \(3x-5+\frac{2}{x}=a\)

\(\frac{2}{a}+\frac{13}{a+6}=6\)

\(\Leftrightarrow6a\left(a+6\right)=2\left(a+6\right)+13a\)

\(\Leftrightarrow6a^2+34a-12=0\Rightarrow\left[{}\begin{matrix}a=\frac{1}{3}\\a=-6\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}3x-5+\frac{2}{x}=\frac{1}{3}\\3x-5+\frac{2}{x}=-6\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}3x^2-\frac{16}{3}x+2=0\\3x^2+x+2=0\end{matrix}\right.\)

5 tháng 4 2021

|x-9|=2x+5

Xét 3 TH

TH1: x>9 => x-9=2x+5 =>-9-5=x =>x=-14 (L)

TH2: x<9 => 9-x=2x+5 => 9-5=3x =>x=4/3(t/m)

TH3: x=9 =>0=23(L)

Vậy  x= 4/3

5 tháng 4 2021

Ta có:\(\dfrac{1-2x}{4}-2\le\dfrac{1-5x}{8}+x\\ \)

\(\dfrac{2-4x-16}{8}\le\dfrac{1-5x+8x}{8}\)

\(-4x-14\le1+3x\\ \Leftrightarrow7x+15\ge0\\ \Leftrightarrow x\ge-\dfrac{15}{7}\)

10 tháng 1 2015

Giải

Đặt A = \(\sqrt{x^2+11x-6}-3\sqrt{x+6}\)

      B = \(\sqrt{x^2+3x-2}-3\sqrt{x+2}\)

Theo bài ra ta có A + B = 4  (1)

Mặt khác ta có A2 - B2 = 8x + 32 - 24\(\sqrt{2x-1}\)(2)

Từ (1) ta có A = 4 - B thế vào (2) ta có 16 - 8B + B2 - B2 = 8x + 32 - 24\(\sqrt{2x-1}\)

Hay B + x + 2 - 3\(\sqrt{2x-1}\)= 0\(\Rightarrow\)\(\sqrt{x^2+3x-2}-3\sqrt{x+2}+x+2\) - \(3\sqrt{2x-1}\)\(\Rightarrow\)\(\sqrt{\left(x+2\right)\left(2x-1\right)}\) - \(3\sqrt{2x-1}+\sqrt{x+2}\left(\sqrt{x+2}-3\right)\)= 0

Hay \(\sqrt{2x-1}\left(\sqrt{x+2}-3\right)+\sqrt{x+2}\left(\sqrt{x+2}-3\right)=0\)

\(\Rightarrow\left(\sqrt{x+2}-3\right)\left(\sqrt{2x-1}+\sqrt{x+2}\right)=0\)

\(\Leftrightarrow\sqrt{x+2}-3=0\Leftrightarrow x=7\)

Thử lại x = 7 thỏa mã bài ra. Vậy nghiệm của phương trình la x = 7

10 tháng 1 2015

câu trả lời hay đấy ,còn cách giải khác không ,giải cho mình nốt các bài còn lại đi

NV
27 tháng 6 2019

Nhận thấy \(x=0\) không phải nghiệm, chia 2 vế cho \(x^2\)

\(\Leftrightarrow\left(2x-3+\frac{1}{x}\right)\left(2x+5+\frac{1}{x}\right)=9\)

Đặt \(2x-3+\frac{1}{x}=a\)

\(a\left(a+8\right)=9\)

\(\Leftrightarrow a^2+8a-9=0\Rightarrow\left[{}\begin{matrix}a=1\\a=-9\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}2x-3+\frac{1}{x}=1\\2x-3+\frac{1}{x}=-9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2x^2-4x+1=0\\2x^2+6x+1=0\end{matrix}\right.\) \(\Leftrightarrow...\)

9 tháng 11 2017

a) | 2x - 3 | = x - 5

Bình phương hai vế phương trình đã cho ta được phương trình hệ quả . Ta có :

| 2x - 3 | = x - 5 \(\Rightarrow\) ( 2x - 3 )2 = ( x - 5 )2

\(\Leftrightarrow\) 4x2 - 12x + 9 = x2 - 10x + 25 

\(\Leftrightarrow\) 3x2 - 2x - 16 = 0

Phương trình cuối có hai nghiệm x1 = -2 ; x2 = 8/3

Vậy phương trình trên là vô nghiệm