K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2019

#)Giải :

Ta có : \(\frac{a+2019}{b+2019}=\frac{a}{b+2019}+\frac{2019}{b+2019}< \frac{a}{b}\)

\(\Rightarrow\frac{a+2019}{b+2019}< \frac{a}{b}\)

26 tháng 6 2019

#)Chi tiết hơn nhé :

\(\frac{a}{b+2019}< \frac{a}{b}\)

\(\frac{2019}{b+2019}< \frac{a}{b}\)

\(\Rightarrow\frac{a}{b+2019}+\frac{2019}{b+2019}=\frac{a+2019}{b+2019}< \frac{a}{b}\)

Y
16 tháng 6 2019

TH1: a < b

=> 2019a < 2019b

=> ab + 2019a < ab+ 2019b

=> a(b+2019) < b(a+2019)

=> a/b < (a+2019)/(b+2019)

TH2: a = b

=> a/b = (a+2019)/(b+2019)

TH3: a > b

=> ab + 2019a > ab+ 2019b

=> a(b+2019) > b(a+2019)

=> a/b > (a+2019)/(b+2019)

16 tháng 6 2019

đúng ko moonshine

đầu tiên: a < b

=> 2019a < 2019b

=> ab + 2019a < ab+ 2019b

=> a(b+2019) < b(a+2019)

=> a/b < (a+2019)/(b+2019)

2: a = b

=> a/b = (a+2019)/(b+2019)

3: a > b

=> ab + 2019a > ab+ 2019b

=> a(b+2019) > b(a+2019)

=> a/b > (a+2019)/(b+2019)

13 tháng 7 2019

Vì b > 0 => b + 2019 > 0

Ta có: \(\frac{a}{b}=\frac{a.\left(b+2019\right)}{b.\left(b+2019\right)}=\frac{a.b+a.2019}{b.\left(b+2019\right)}=\frac{a+2019}{b+2019}=\)

\(\frac{b.\left(a+2019\right)}{b.\left(b+2019\right)}=\frac{a.b+b.2019}{b.\left(b+2019\right)}\)

TH1: Nếu a < b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}< \frac{a.b+b.2019}{b.\left(b+2019\right)}\)

                       hay \(\frac{a}{b}< \frac{a+2019}{b+2019}\)

TH2: Nếu a = b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}=\frac{a.b+b.2019}{b.\left(b+2019\right)}\)

                       hay \(\frac{a}{b}=\frac{a+2019}{b+2019}\)

TH3: Nếu a > b => \(\frac{a.b+a.2019}{b.\left(b+2019\right)}>\frac{a.b+b.2019}{b.\left(b+2019\right)}\)

                       hay \(\frac{a}{b}=\frac{a+2019}{b+2019}\)

13 tháng 7 2019

Xét tích : \(a(b+2019)=ab+2019a\)

\(b(a+2019)=ab+2019b\)

Vì b > 0 nên b + 2019 > 0

Nếu a > b thì \(ab+2019a>ab+2019b\)

\(a(b+2019)>b(a+2019)\)

\(\Rightarrow\frac{a}{b}>\frac{a+2019}{b+2019}\)

Nếu a < b thì \(ab+2019a< ab+2019b\)

\(a(b+2019)< b(a+2019)\)

\(\Rightarrow\frac{a}{b}< \frac{a+2019}{b+2019}\)

Nếu a = b thì rõ ràng \(\frac{a}{b}=\frac{a+2019}{b+2019}\)

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

17 tháng 6 2015

để so sánh, ta xét hiệu a/b và a+n/b+n có: \(\frac{a}{b}-\frac{a+n}{b+n}=\frac{ab+an-ab-bn}{b\left(b+n\right)}=\frac{n\left(a-b\right)}{b\left(b+n\right)}\)

ta có mẫu gồm các số >0 => mẫu dương. n>0. nếu a>b => a-b>0 <=> \(\frac{n\left(a-b\right)}{b\left(b+n\right)}>0\Rightarrow\frac{a}{b}>\frac{a+n}{b+n}\). nếu a<b <=> a-b<0 => \(\frac{n\left(a-b\right)}{b\left(b+n\right)}<0\Rightarrow\frac{a}{b}<\frac{a+n}{b+n}\)

áp dụng từ đó ta có thể so sánh. 

ví dụ: 2/7 và 4/9

ta thấy 2<7 => \(\frac{2}{7}<\frac{2+2}{7+2}=\frac{4}{9}\)

cứ thế làm tiếp nha. ở 3 ví dụ này mình thấy a đều nhỏ hơn b đó. vậy là đều nhỏ hơn rồi

10 tháng 9 2017

nếu a/b<1 => a/b< a+n/ b+n

nếu a/b>1=> a/b> a+n/ b+n

còn các câu áp dụng thì tự làm nhé

7 tháng 9 2016

Nếu 

a < b 

=) \(\frac{a}{b}< \frac{a+2001}{b+2001}\)

Nếu a > b 

=) \(\frac{a}{b}>\frac{a+2001}{b+2001}\)

Nếu a = b 

=) \(\frac{a}{b}=\frac{a+2001}{b+2001}\)

7 tháng 9 2016

Xét tích            \(a\left(b+2001\right)=ab+2001a\\ b\left(a+2001\right)=ab+2001b.\)Vì \(b>0\)nên \(b+2001>0\).

Nếu \(a>b\) thì \(ab+2001a>ab+2001b\\ a\left(b+2001\right)>b\left(a+2001\right)\)

\(\frac{\Rightarrow a}{b}>\frac{a+2001}{b+2001}\) 

Nếu \(a< b\) thì \(\frac{\Rightarrow a}{b}< \frac{a+2001}{b+2001}\)

Nếu \(a=b\) thì rõ ràng \(\frac{a}{b}=\frac{a+2001}{b+2001}\)

Vì dụ 5: Để so sánh \(\frac{a}{b}\)và \(\frac{a+1}{b+1}\) , ta đi so sánh giữa 2 số a (b+1) và b(a+1) .

Xét hiệu: a(b+1) - b(a+1) = ab+ a - (ab +b) = a-b. Ta có 3 trường hợp, với điều kiện b >0: 

Trường hợp 1: Nếu a-b = 0 \(\Leftrightarrow\)a = b thì : 

                                    a(b+1) - b(a+1) = 0\(\Leftrightarrow\)a(b+1) = b(a+1) 

                                  \(\Leftrightarrow\)\(\frac{a\left(b+1\right)}{b\left(b+1\right)}\)\(\frac{b\left(a+1\right)}{b\left(b+1\right)}\)\(\Leftrightarrow\frac{a}{b}\)=\(\frac{a+1}{b+1}\).

Trường hợp 2: Nếu a - b< 0 \(\Leftrightarrow\)a < b thì: 

                                    a(b+1) - b(a+1)< 0\(\Leftrightarrow\)a(b+1) < b(a+1) 

                                   \(\Leftrightarrow\)\(\frac{a\left(b+1\right)}{b\left(b+1\right)}\)\(\frac{b\left(a+1\right)}{b\left(b+1\right)}\)\(\Leftrightarrow\)\(\frac{a}{b}\)\(\frac{a+1}{b+1}\).

Trường hợp 3: Nếu a-b> 0 \(\Leftrightarrow\) a > b thì: 

                                      a(b+1) - b(a+1) > 0 \(\Leftrightarrow\)a(b+1) > b(a+1) 

                                 \(\Leftrightarrow\frac{a\left(b+1\right)}{b\left(b+1\right)}\)>\(\frac{b\left(a+1\right)}{b\left(b+1\right)}\)\(\Leftrightarrow\frac{a}{b}\)>\(\frac{a+1}{b+1}\).

Ví dụ 6: Bg: Gọi khối lượng của niken, kẽm và đồng theo thứ tự m1, m2, m3. Từ giả thiết ta có: m1+m2+m= 150 kg. 

                        \(\frac{m_1}{3}\) =\(\frac{m_2}{4}=\frac{m_3}{13}\Rightarrow\frac{m_1}{3}=\frac{m_2}{4}=\frac{m_3}{13}=\)\(\frac{m_1+m_2+m_3}{3+4+13}=\frac{150}{20}=7,5\)

Từ đó, suy ra m1 = 3.7,5 = 22,5kg, m2 = 4.7,5 = 30 kg và m3 = 13.7,5 = 97,5kg .

9 tháng 6 2016

1.a) Ta có:

\(\frac{18}{-25}=-\frac{18.12}{25.12}=-\frac{216}{300}< -\frac{213}{300}\)

Vậy \(-\frac{213}{300}>\frac{18}{-25}\)

b) Ta có:

\(0,75>0>-\frac{3}{4}\)

Vậy \(0,75>-\frac{3}{4}\)

2, * Khi a, b cùng dấu thì \(\frac{a}{b}>0\)

* Khi a, b khác dấu thì \(\frac{a}{b}< 0\)

Đây là kiến thức cơ bản !

15 tháng 7 2017

ai có biết câu trả lời này thì nhắn lại cho mình