Cho x,y,b,d€N.CM Nếu a/b<c/d thì a/b<xa+yc/xb+yd<c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x và y là số hữu tỉ nên x có dạng a/b,y có dạng c/d
vì x<y =>a/b<c/d
(=)a.d<b.c(đpcm)
ĐỀ sai
a = 1 ; b = 4 ; c = 1 ; d = 2 ta có
\(\frac{1}{4}<\frac{1}{2}\)
Nhưng z = \(\frac{1+1}{2+4}=\frac{2}{6}=\frac{1}{3}\) không lớn hơn 1/2 hay y
Phải là x < z < y
Đề bài sai
Ví dụ: với \(a=1;b=2;c=3,d=4\) thì \(x=\dfrac{1}{2}\) ; \(y=\dfrac{3}{4}\) ; \(z=\dfrac{2}{3}\)
Khi đó \(x< y\) nhưng \(z< y\)
\(\text{Vì }\dfrac{a}{b}< \dfrac{c}{d}\text{ nên }ad< bc\left(1\right)\)
\(\text{Xét tích}:a\left(b+d\right)=ab+ad\left(2\right)\)
\(b\left(a+c\right)=ba+bc\left(3\right)\)
\(\text{Từ(1);(2);(3)}\Rightarrow a\left(b+d\right)< b\left(a+c\right)\text{ do đó }\dfrac{a}{b}< \dfrac{a+c}{b+d}\left(4\right)\)
\(\text{Tương tự ta có:}\dfrac{a+c}{b+d}< \dfrac{c}{d}\left(5\right)\)
\(\text{Từ (4);(5) ta được }\dfrac{a}{b}< \dfrac{a+c}{b+d}< \dfrac{c}{d}\)
\(\Rightarrow x< y< z\)
+)Vì x<y
Suy ra a/b<c/d
Suy ra a.b+a.d<b.c+b.a
Suy ra a.(b+d)<b.(c+a)
Suy ra a/b<c+a/b+d
Suy ra a/b<c+a/b+d<c/d
Suy ra x<z<y
bài của Never_NNL sai nhé:
\(x+y=m+n\) \(\Rightarrow\)\(n=x+y-m\)
Ta có: \(A=x^2+y^2+m^2+n^2\)
\(=x^2+y^2+m^2+\left(x+y-m\right)^2\)
\(=2x^2+2y^2+2m^2+2xy-2mx-2my\)
\(=\left(x^2+2xy+y^2\right)+\left(x^2-2mx+m^2\right)+\left(y^2-2my+m^2\right)\)
\(=\left(x+y\right)^2+\left(x-m\right)^2+\left(y-m\right)^2\)
Vậy A là tổng của 3 số chính phương
x + y = m + n
m = x + y - n
x^2 + y^2 + ( x + y - n )^2 + n^2
= x^2 + y^2 + ( x^2 + xy- xn ) + ( xy + y^2 - ny ) - [ ( - xn ) + ( - ny ) + n^2 ] + n^2
= x^2 + y^2 + x^2 + xy - xn + xy + y^2 - ny + xn + ny - n^2 + n^2
= 2x^2 + 2y^2 + 2xy
= x^2 + y^2 + ( x^2 + y^2 + 2xy )
= x^2 + y^2 + ( x + y )^2 ( dpcm )